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Abstract

In this thesis, we construct two-parameter generalisations of Hecke-Appell type ex-
pansions for the generating functions of unimodal and special unimodal sequences.
We obtain their explicit representations in terms of mixed false theta series. We use
these representations to recover partial theta identities from Ramanujan’s lost note-
book and in work of Warnaar.
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Chapter 1

Introduction

A modular form is an analytic object with intrinsic symmetric properties. Over the past
two hundred years, the study of modular forms has enjoyed fruitful interdependen-
cies with many areas such as number theory, algebraic geometry, combinatorics and
mathematical physics. In particular, they were the key players in Maryna Viazovska’s
spectacular result on the sphere packing problem [45] for which she was awarded the
2022 Fields Medal. She studied packings of lattice points by defining theta functions
associated to integer lattices in dimensions 8 and 24. Modular properties of combina-
torial generating functions often help determine asymptotics or congruences for the
associated coefficients. Modular forms also played an integral part in Andrew Wiles’
proof [48] of Fermat’s last theorem, relating them to elliptic curves. More concretely, a
modular form f of weight k ∈ Z for SL2(Z) is a holomorphic function on the complex
upper-half plane H := {x + iy : x, y ∈ R, y > 0} satisfying

• (Transformation Condition):

∀τ ∈ H and

(
a b
c d

)
∈ SL2(Z), f ( aτ+b

cτ+d ) = (cτ + d)k f (τ), and

• (Growth Condition): f is holomorphic at infinity.

This definition can be extended to include half-integer weights and congruence sub-
groups, and can be generalised in various ways. For further details, see [19]. Prototyp-
ical examples of modular forms are specialisations of the theta function

Θ(x; q) := (x; q)∞(q/x; q)∞(q; q)∞ = ∑
n∈Z

(−1)nq(
n
2)xn (1.0.1)

1
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where x ∈ C× and q = e2πiτ, τ ∈ H, and the last equality is due to the Jacobi triple-
product identity. For instance,

Θ(−q
1
2 ; q) = ∑

n∈Z
q

n2
2 (1.0.2)

is a modular form of weight 1
2 . Here and throughout, we use the standard q-Pochhammer

symbol

(a)n = (a; q)n :=
n

∏
k=1

(1 − aqk−1),

valid for n ∈ N∪ {∞}.
Roughly speaking, a q-series (or q-hypergeometric series) is any convergent power

series in q assembled from (a)n. For example, one can find

f (q) =
∞

∑
n=0

qn2

(−q; q)2
n

(1.0.3)

in Ramanujan’s last letter to G. H. Hardy on the 12th of January, 1920. The theory of
q-series began with the famous partition theoretic theorem of Euler in 1750, was
systematically developed by Heine in 1847, and was further expanded by F. H. Jackson
and L. J. Rogers at the end of the 19th and the beginning of the 20th centuries. Three
classes of q-series which eluded classification as modular forms are mock theta functions,
partial theta series and false theta functions, all of which were studied by Ramanujan.

The work of Hardy and Ramanujan is one of the most famous collaborations in the
history of mathematics. Unfortunately, Ramanujan died at the age of 32, within a year
of moving back to India from England. Ramanujan sent only one letter to Hardy in
this time before he died. In this last letter he presented 17 functions which he claimed
behaved like modular forms but did not transform like them. He called them mock
theta functions. He presented them in four groups: one of order 3, two order 5, and
one of order 7, as well as equations relating functions within each group. These re-
lations became known as the mock theta conjectures. In 2002, Zwegers [51] made the
groundbreaking step in understanding how Ramanujan’s mock theta functions, e.g.,
(1.0.3) fit into the theory of modular forms. For example, one can show that [25]

f (q) = 2m(−q, q3, q) + 2m(−q, q3, q2).
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Here, for x, z ∈ C× and |q| < 1 such that neither z nor xz is an integer power of q, we
define the Appell-Lerch sum as

m(x, q, z) :=
1

Θ(z; q) ∑
r∈Z

(−1)rq(
r
2)zr

1 − qr−1xz
. (1.0.4)

The key is to realise that there is a precise relationship between mock theta functions
and harmonic weak Maass forms [18]. These latter functions have a Fourier expansion
with coefficients that can be classified into a “non-holomorphic part” and a “holomor-
phic part”. Following Zagier [49], the “holomorphic part” is called a mock modular
form. In [51], Zwegers proves that appropriate specialisations of (1.0.4) are weight 1

2
mock modular forms. All of the classical examples of mock theta functions due to
Ramanujan, Watson and others fit into this picture as they are holomorphic parts of
harmonic weak Maass forms [18]. This realisation has many astonishing consequences
and further developments concerning mock modular forms would have striking im-
plications not only in mathematics, but also in, e.g., wall-crossing phenomena in the
theory of black holes [22], the dynamics of supersymmetric field theories [31], homo-
logical mirror symmetry [39] and conformal field theory [43]. For a superb overview
of the history, theory and applications of mock modular forms, see [23, 49].

In 1923, the University of Madras sent Hardy a packet of Ramanujan’s notes and
papers which (according to Bruce Berndt [11]) most likely contained what is now called
“the lost notebook”. These notes were in possession of Watson when he died and were
nearly incinerated alongside the other “clutter” in his office, but were retrieved by
Rankin and sent to Trinity College Cambridge in 1968. They sat there for 7.5 years be-
fore Slater suggested to Andrews to sort through them while visiting. During his visit,
Andrews found this sheaf of 158 pages which featured the mock theta conjectures and
many other unproven identities. Andrews and Berndt compiled Ramanujan’s notes
and provided full proofs as part of the five volume series [5–9], the last of which was
published in 2018. Ramanujan’s work has inspired over a century of mathematics de-
spite gathering dust (and nearly being incinerated...) for more than 40 years.

Importantly, the lost notebook contained a number of identities involving partial
theta series, i.e., specialisations of sums of the form

∞

∑
n=0

(−1)nq(
n
2)xn, e.g.,

∞

∑
n=0

q
n2
2 . (1.0.5)
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Note that the sum in (1.0.5) is over {n ∈ Z : n ≥ 0} whereas the sum in (1.0.1) is over
Z. As seen in [2, 3], [6, Entry 6.3.2], [46, p. 379], [6, Entry 6.3.7] and [6, Entry 6.3.4], we
have the following four partial theta identities.

∑
n≥0

qn

(−xq)n(−q/x)n
= (1 + x) ∑

n≥0
x3nq

n(3n+1)
2 (1 − x2q2n+1)

− (1 + x)(q)∞

Θ(−x; q) ∑
n≥0

(−1)nx2n+1q
n(n+1)

2 , (1.0.6)

∑
n≥0

q2n

(xq)n(q/x)n
= (1 − x)

(
1 + x + (1 + x2) ∑

n≥1
(−1)nx3n−2q

n(3n−1)
2 (1 + xqn)

+
x2 + (1 + x2)∑n≥1(−1)nx2nq(

n+1
2 )

(x)∞(q/x)∞

)
, (1.0.7)

∑
n≥0

(−q)2nq2n+1

(xq; q2)n+1(q/x; q2)n+1
=

(
x

x + 1

)(
− ∑

n≥0
(−x)nqn(n+1)

+
Θ(−q; q4)

Θ(xq; q2) ∑
n≥0

(−x)nq
n(n+1)

2

)
(1.0.8)

and

∑
n≥0

q2n+1

(−xq; q2)n+1(−q/x; q2)n+1
= ∑

n≥0
x3n+1q3n2+2n(1 − xq2n+1)

− (q2; q2)∞

Θ(−xq; q2) ∑
n≥0

(−1)nx2n+1qn(n+1). (1.0.9)

For example, one can find the identity (1.0.6) on lines 7, 8 and 9 of page 37 of the lost
notebook [40] (see Figure 1.1).
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Figure 1.1: Identity (1.0.6) on page 37 of Ramanujan’s lost notebook

False theta functions originate in the work of L. J. Rogers [42] and are similar to clas-
sical theta functions but are not modular forms as they contain “sign flips”. Through-
out this thesis, we say that a specialisation of a q-series of the form

∑
n∈Z

sg(n)(−1)nq(
n
2)xn

is a false theta series where

sg(r) =

1 if r ≥ 0

−1 if r < 0.
(1.0.10)



1.1 STRONGLY UNIMODAL SEQUENCES 6

False theta series have also been extensively studied from the perspective of q-series
and combinatorics. In particular, they occur in q-series identities in Ramanujan’s lost
notebook. In [5, Chapter 9], one finds the following identities involving false theta
series

∑
n≥0

(−1)nq(
n+1

2 ) = ∑
n∈Z

sg(n)q2n2+n (1.0.11)

and

∑
n≥0

q3(n+1
2 )−n(1 − q2n+1) = ∑

n∈Z
sg(n)q3(n+1

2 )−n. (1.0.12)

Specialising (1.0.6) also yields examples of false theta functions, e.g., when a = 1,

∑
n≥0

qn

(−q)2
n
= 4 ∑

n∈Z
sg(n)q3(n+1

2 ) − (q)∞

Θ(−q; q) ∑
n∈Z

sg(n)q2n2+n (1.0.13)

and when a = −1,

∑
n≥0

qn

(q)2
n
=

1
(q)2

∞
∑

n∈Z
sg(n)q2n2+n. (1.0.14)

For completeness, we summarise the notation introduced so far by compiling ex-
amples of the key building blocks for each modular-like function.

Modular form: Mock modular form: False theta series: Partial theta series:
Θ(−q3; q4) m(q, q4,−q3) ∑

n∈Z
sg(n)q2n2+n ∑

n≥0
q2n2+n

The starting point in this thesis lies in the study of modular properties for combinato-
rial q-series, namely the generating function of strongly unimodal sequences.

1.1 Strongly Unimodal Sequences

A sequence of positive integers is strongly unimodal if

a1 < . . . < ar < c > b1 > . . . > bs (1.1.1)

with n = c + ∑r
j=1 aj + ∑s

j=1 bj. Here, c is the peak and n is the weight of the sequence.
The rank of such a sequence is defined as s − r, i.e., the number of terms after c minus
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the number of terms before c. For example, there are six strongly unimodal sequences
of weight 5, namely

(5), (1, 4), (4, 1), (1, 3, 1), (2, 3), (3, 2).

The ranks are 0, −1, 1, 0, −1 and 1, respectively. Let u(m, n) be the number of such
sequences of weight n and rank m. Note that

(−xq)n = ∑
0≤i,j≤ n(n+1)

2

p(i, j)xiqj

is a (terminating) generating function with coefficients p(i, j) counting the number of
partitions of j with i distinct parts. We can construct a strongly unimodal sequence
of weight n, with peak c, by concatenating a (left) partition of size less than c with
distinct parts, a (peak) part of size exactly c and a (right) partition of size less than c
with distinct parts, and count them accordingly (see Figure 1.2) to obtain the generating
function

U(x; q) := ∑
n≥1
m∈Z

u(m, n)xmqn = ∑
c≥1

(−xq)c−1(−x−1q)c−1qc

= ∑
n≥0

(−xq)n(−x−1q)nqn+1.

qc (−xq)c−1(−x−1q)c−1

Figure 1.2: Construction of a strongly unimodal sequence.

Such sequences are not only abundant in algebra, combinatorics and geometry [13, 14,
44], but have recent intriguing connections to knot theory and modular forms [20, 34].
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In 2015, Hikami and Lovejoy [26] introduced the generalised U-function

U(m)
t (x; q) := q−t ∑

kt≥···≥k1≥0
km≥1

(−xq)kt−1(−x−1q)kt−1qkt

×
t−1

∏
i=1

qk2
i

[
ki+1 − ki − i + ∑i

j=1(2k j + χ(m > j))
ki+1 − ki

] (1.1.2)

where t, m ∈ Z with 1 ≤ m ≤ t, χ(X) := 1 if X is true and χ(X) := 0 otherwise and[
n
k

]
:=

(q)n

(q)n−k(q)k

is the standard q-binomial coefficient. Note that

U(1)
1 (x; q) = q−1U(x; q).

The motivation for (1.1.2) arises in quantum topology. Let K be a knot and JN(K; q) be
the Nth coloured Jones polynomial, normalised to be 1 for the unknot. By computing
an explicit formula for the cyclotomic coefficients of the coloured Jones polynomial of
the left-handed torus knots T∗

(2,2t+1) [26, Proposition 3.2] and comparing with (1.1.2),
one obtains the following relation between unimodal sequences and torus knots: Thus,

U(1)
t (−qN; q) = JN(T∗

(2,2t+1); q).

U(m)
t (x; q) can be viewed as “extracted” from JN(T∗

(2,2t+1); q). In addition, Hikami and
Lovejoy proved the Hecke-Appell type expansion [26, Theorem 5.6]

U(m)
t (−x; q) = −q−

t
2−

m
2 +

3
8
(qx)∞(x−1q)∞

(q)2
∞

×

 ∑
r,s≥0

r ̸≡s (mod 2)

− ∑
r,s<0

r ̸≡s (mod 2)

 (−1)
r−s−1

2 q
1
8 r2+ 4t+3

4 rs+ 1
8 s2+ 1+m+t

2 r+ 1−m+t
2 s

1 − xq
r+s+1

2

(1.1.3)
and stated [26, page 13] “. . . it is hoped that the Hecke series expansions established in
this paper will turn out to be useful for determining modular transformation formulae for
U(m)

t (x; q).”
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They studied the base case [26, Theorem 4.1] and showed that

U(1)
1 (−x; q) =

1
(1 − x)(q)∞

(
∑

n,r≥0
− ∑

n,r<0

)
(−1)n+rx−rqn(3n+5)/2+2nr+r(r+3)/2 (1.1.4)

which, by work of Hickerson and Mortenson [25], is a mixed mock modular form. A
mixed mock modular form is an expression of the form [22, 33]

N

∑
i=1

higi

where hi is a modular form and gi is a mock modular form. We remark that the mod-
ular forms need not have equal weight. Naturally, one wonders if the same is true
for U(m)

t (x; q). In recent striking work [35], Mortenson and Zwegers show that this is
indeed the case by expressing U(m)

t (x; q) in terms of finite sums of Hecke-type double
sums

fa,b,c(x, y; q) := ∑
r,s∈Z

sg(r, s)(−1)r+sqa(r
2)+brs+c(s

2)xrys (1.1.5)

where a, b and c are positive integers,

sg(r, s) :=
sg(r) + sg(s)

2
. (1.1.6)

and sg(r) is given by (1.0.10). Precisely, they prove for t ≥ 2 and 1 ≤ m ≤ t [35,
Theorem 1.7, Corollary 5.3]

(1 − x)U(m)
t−1(−x; q) =

q−m+1−t

(q)3
∞

2t−1

∑
k=0

(−1)kq(
k+1

2 )

×
(

f1,4t−1,1(qk+m+t, qk−t−m+1; q)− qm f1,4t−1,1(qk−t+m+1, qk−m+t; q)
)

× f1,2t,2t(2t−1)(x−1q1+k,−q(2t−1)(k+t)+t; q).
(1.1.7)

As discussed in Chapter 2, one can show that the expression within the brackets in
(1.1.7) is (up to an appropriate power of q) a modular form while the remaining double
sum is a mixed mock modular form. Thus, U(m)

t (x; q) is a mixed mock modular form.

1.2 Statement of Results

A sequence of positive integers is unimodal if each < is replaced with ≤ in (1.1.1), i.e.,

1 ≤ a1 ≤ . . . ≤ ar ≤ c ≥ b1 ≥ . . . ≥ bs ≥ 1. (1.2.1)
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We write c for the distinguished peak as it may not be unique. The rank of such a
sequence is again s − r. For example, there are 12 unimodal sequences of weight 4,
namely

(4), (1, 3), (3, 1), (1, 2, 1), (2, 2), (2, 2),

(1, 1, 2), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).
(1.2.2)

These sequences have numerous other guises [4, Section 3] and appear in a wide vari-
ety of areas [41].

Inspired by (1.1.3) and (1.1.7), in this thesis we first consider two-parameter general-
isations of Hecke-Appell type expansions for the five generating functions of unimodal
and special unimodal sequences which appear in [15, 28, 29]. To our knowledge, this
covers all known cases of unimodal sequences whose generating function has such an
expansion. We then find explicit representations for these generalisations in terms of
mixed false theta functions, i.e., expressions of the form

N

∑
i=1

higi

where hi is a modular form and gi is a false theta function. These new occurrences of
mixed modularity nicely complement (1.1.7) and hint at a general underlying structure
for Hecke-Appell type expansions with such properties. This is discussed in Chapter
5. As an application, we demonstrate how the base cases of our results recover the
partial theta identities (1.0.6)–(1.0.9). The results in this thesis appeared in [1].

Remark 1.2.1. Similar to mixed mock modular forms, the modular forms which feature in the
summand of a mixed false theta functions need not have the same weight. However, the modular
forms in the summands of Theorems 1.2.3, 1.2.5, 1.2.7, 1.2.9 and 1.2.11 all have weight 1, e.g.,
expressions of the form f1,2t,1(x, y; q) feature in Theorems 1.2.3, 1.2.5 and 1.2.9. Consider the
case when t = 1 and x, y are integer powers of q. Using the identity [25]

f1,2,1(x, y; q) = Θ(y; q)m(
q2x
y2 , q3,−1)+Θ(x; q)m(

q2y
x2 , q3,−1)

− y(q3; q3)3
∞Θ(−x/y; q)Θ(q2xy; q3)

Θ(−1; q3)Θ(−qy2/x; q3)Θ(−qx2/y; q3),

one can see that the first two terms vanish. The weight of the remaining modular form can be
computed by noting that (q3; q3)3

∞ has weight 3
2 and each Θ-function has weight 1

2 . Analogous
computations can be carried out using formulas from [25] and [35].
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1.2.1 Modularity of U(m)
t (x; q)

For the first case, let u(m, n) denote the number of unimodal sequences of weight n
and rank m and consider its generating function [28, Eq. (2.2)]

U(x; q) := ∑
n≥1
m∈Z

u(m, n)xmqn = ∑
n≥0

qn

(xq)n(q/x)n
(1.2.3)

which satisfies the Hecke-Appell type expansion [28, Eq. (2.5)]

U(x; q) =
(1 − x)
(q)2

∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq

r2
2 +2rs+ s2

2 + 3
2 r+ 1

2 s

1 − xqr . (1.2.4)

Remark 1.2.2. A unimodal sequence can be constructed by fixing a peak of size n, with two
partitions of weight at most n on either side, i.e., the unimodal sequences with peak n are
counted by

qn

(xq)n(q/x)n

where x tracks the number of parts of the partitions to the right of the peak and x−1 tracks the
number of parts of the partitions on the left. This yields (1.2.3).

For t, m ∈ Z with t ≥ 1, −t ≤ m ≤ 3t − 2 and t ≡ m (mod 2), consider the
generalisation

gt,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq

r2
2 +2trs+ s2

2 + t+1+m
2 r+ t+1−m

2 s

1 − xqr (1.2.5)

and

U
(m)
t (x; q) :=

(1 − x)
(q)2

∞
gt,m(x; q). (1.2.6)

By (1.2.4)–(1.2.6), U(1)
1 (x; q) = U(x; q). Following [25], we use the term “generic” to

mean that the parameters do not cause poles in the Appell-Lerch series (1.0.4) or in
the quotients of theta functions which occur after applying (2.1.1) to the Hecke-type
double sums. Our first result shows that U(m)

t (x; q) is a mixed false theta function.
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Theorem 1.2.3. Let t, m ∈ Z with t ≥ 1, −t ≤ m ≤ 3t − 2 and t ≡ m (mod 2). For
generic x, we have

U
(m)
t (x; q) =

(1 − x)
Θ(x; q)

q1−3t2− t−m
2 +tm

(q)2
∞

4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q4t2k−t2+tm− t−m
2 +8t4

; q).
(1.2.7)

Hence, U(m)
t (x; q) is a mixed false theta series.

1.2.2 Modularity of W(m)
t (x; q)

For the second case, consider unimodal sequences with a double peak, i.e., sequences
of the form

a1 ≤ . . . ≤ ar ≤ c c ≥ b1 ≥ . . . ≥ bs

with weight n = 2c + ∑r
i=1 ai + ∑s

i=1 bi. For example, there are eleven such sequences
of weight 6, namely

(3, 3), (2, 2, 2), (2, 2, 2), (2, 2, 1, 1), (1, 2, 2, 1), (1, 1, 2, 2),

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1).

The rank of such a unimodal sequence is s − r where we assume that the empty se-
quence has rank 0. Let W(m, n) denote the number of such sequences of weight n and
rank m and consider its generating function [29, Eq. (2.1)]

W(x; q) := ∑
n≥0
m∈Z

W(m, n)xmqn = ∑
n≥0

q2n

(xq)n(q/x)n
(1.2.8)

which satisfies the Hecke-Appell type expansion [29, Eq. (2.3)]

W(x; q) =
(1 − x)
(q)2

∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq

r2
2 +2rs+ s2

2 + r
2+

s
2 (1 + q2r)

1 − xqr − 1
(xq)∞(q/x)∞

.

(1.2.9)

Remark 1.2.4. The derivation of (1.2.8) is similar to U(x; q) but we replace qn with q2n in
(1.2.3) because we count the peak twice.



1.2 STATEMENT OF RESULTS 13

For t, m ∈ Z with t ≥ 1, 1 − t ≤ m ≤ t, consider the generalisation

ht,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq(

r+1
2 )+2trs+(s+1

2 )+(t−m)r(1 + q2mr)

1 − xqr (1.2.10)

and

W(m)
t (x; q) :=

(1 − x)
(q)2

∞
ht,m(x; q)− 1

(xq)∞(q/x)∞
. (1.2.11)

By (1.2.9)–(1.2.11), W(1)
1 (x; q) = W(x; q). Our second result demonstrates that W(m)

t (x; q)
is the sum of a mixed false theta function and a modular form.

Theorem 1.2.5. Let t, m ∈ Z with t ≥ 1, 1 − t ≤ m ≤ t. For generic x, we have

W(m)
t (x; q) =

(1 − x)q1−m−2t2

(q)2
∞Θ(x; q)

4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(qt−m+2−4t2+k, q; q)

×
(

f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q8t4−m+4t2k; q)

+ f1,4t2−1,4t2(4t2−1)(xqk+1,−q8t4−m+4t2k; q)

)

− 1
(xq)∞(q/x)∞

.

(1.2.12)
Hence, W(m)

t (x; q) is a mixed false theta series.

1.2.3 Modularity of V(m)
t (x; q)

For the third case, consider unimodal sequences where c is odd, ∑ ai is a partition
without repeated even parts and ∑ bi is an overpartition into odd parts whose largest
part is not c. For example, there are twelve such sequences of weight 5, namely

(5), (1, 3, 1), (1, 1, 3), (3, 1, 1), (3, 1, 1), (1, 3, 1), (2, 3),

(1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1).

The rank of such a sequence is the number of odd non-overlined parts in ∑ bi minus
the number of odd parts in ∑ ai. Let V(m, n) denote the number of such sequences of
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weight n and rank m and consider its generating function [29, Eq. (4.1)]

V(x; q) := ∑
n≥0
m∈Z

V(m, n)xmqn = ∑
n≥0

(−q)2nq2n+1

(xq; q2)n+1(q/x; q2)n+1
(1.2.13)

which satisfies the Hecke-Appell type expansion [29, Eq. (4.3)]

V(x; q) =
1

(q)∞(q2; q2)∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sqr2+2rs+ s2

2 +3r+ 3s
2 +1

(1 + q2r+1)(1 − xq2r+1)
. (1.2.14)

Remark 1.2.6. An overpartition is a partition in which the first occurrence of a part may
be overlined [21]. Since the overlined parts form a partition into distinct parts and the non-
overlined parts form an ordinary partition, we have

P̄(q) := ∑
n≥0

p̄(n)qn =
(−q; q)∞

(q; q)∞

where p̄(n) is the number of overpartitions of n. We obtain (1.2.13) by first counting the peak
with q2n+1. Here, ∑ bi can be expressed by (−q;q2)n+1

(q;q2)n+1
. In order to account for the rank, we need

to include an x term to track the non-overlined parts (the denominator) to obtain (−q;q2)n+1
(xq;q2)n+1

.
Also, ∑ ai can be interpreted as a sequence consisting of a partition of odd parts of size at most
2n + 1, and a partition with distinct even parts of size at most 2n, i.e., (−q2;q2)n

(q;q2)n+1
. In order to

track the odd parts to the left of the peak, we include an x−1 to obtain (−q2;q2)n
(x−1q;q2)n+1

. So, such
sequences with peak 2n + 1 are counted by

V(x; q) := ∑
n≥0
m∈Z

V(m, n)xmqn = ∑
n≥0

(−q; q2)n+1(−q2; q2)nq2n+1

(xq; q2)n+1(q/x; q2)n+1

and the numerator simplifies to yield (1.2.13).

For t, m ∈ Z where t ≥ 1, consider the generalisation

kt,m(x; q) =
xq

1 + x

(
1
x

kt,m(−1; q) + kt,m(x; q)
)

where

kt,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2(r

2)+2trs+(s
2)+2(t+1)r+2ms

1 − xq2r+1 (1.2.15)
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and
V
(m)
t (x; q) :=

1
(q)∞(q2; q2)∞

kt,m(x; q). (1.2.16)

By (1.2.14)–(1.2.16), V(1)
1 (x; q) = V(x; q). Our third result establishes that V(m)

t (x; q) is a
mixed false theta function.

Theorem 1.2.7. Let t, m ∈ Z where t ≥ 1. For generic x, we have

V
(m)
t (x; q) =

q−2t2+3t−4tm

(1 + x)(q)∞(q2; q2)∞

2t2−2

∑
k=0

(−1)kqk2+3k f2,2t,1(q2t+2−4t2+2k, q2m; q)

×
(

1
Θ(−q; q2)

f1,2t2−1,2t2(2t2−1)(−q2k+1,−q4t2k−2+3t−4tm+4t4
; q2)

− 1
Θ(qx; q2)

f1,2t2−1,2t2(2t2−1)(x−1q2k+1,−q4t2k−2+3t−4tm+4t4
; q2)

)
.

(1.2.17)
Hence, V(m)

t (x; q) is a mixed false theta series.

1.2.4 Modularity of O(m)
t (x; q)

For the fourth case, consider odd unimodal sequences, i.e., unimodal sequences where
the parts ai, bj and c are odd positive integers. For example, there are six such se-
quences of weight 4, namely

(1, 3), (3, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

Again, the rank is s − r. Let ou(m, n) denote the number of odd unimodal sequences
of weight n and rank m and consider its generating function [15, Eq. (1.5)]

O(x; q) := ∑
n≥1
m∈Z

ou(m, n)xmqn = ∑
n≥0

q2n+1

(xq; q2)n+1(q/x; q2)n+1
(1.2.18)

which satisfies the Hecke-Appell type expansion [15, Eq. (1.7)]

O(x; q) =
q

(q2; q2)2
∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sqr2+4rs+s2+3r+3s

1 − xq2r+1 . (1.2.19)

Remark 1.2.8. One can confirm (1.2.18) using the ideas in Remark 1.2.2.
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For t, m ∈ Z with t ≥ 1, 1 − t ≤ m ≤ t, consider the generalisation

pt,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq(

r
2)+2trs+(s

2)+(t+m)r+(t+m)s

1 − xqr (1.2.20)

and
O
(m)
t (x; q) :=

q
(q2; q2)2

∞
pt,m(qx; q2). (1.2.21)

By (1.2.19)–(1.2.21), O(1)
1 (x; q) = O(x; q). Our next result exhibits that O(m)

t (x; q) is a
mixed false theta function.

Theorem 1.2.9. Let t, m ∈ Z with t ≥ 1, 1 − t ≤ m ≤ t. For generic x, we have

O
(m)
t (x; q) =

q3−8t2−2(m−1)(2t−1)

Θ(xq; q2)(q2; q2)2
∞

4t2−2

∑
k=0

(−1)k+1qk2+3k f1,2t,1(q2t+2m+2−8t2+2k, q2t+2m; q2)

× f1,4t2−1,4t2(4t2−1)(x−1q2k+1,−q16t4−4t2−2(m−1)(2t−1)+8t2k; q2).
(1.2.22)

Hence, O(m)
t (x; q) is a mixed false theta series.

1.2.5 Modularity of V(m)
t (x; q)

For the final case, consider unimodal sequences where ∑ bi is a partition into parts at
most c − k where k is the size of the Durfee square of the partition ∑ ai. For example,
there are ten such sequences of weight 4, namely

(4), (1, 3), (3, 1), (1, 2, 1), (2, 2), (2, 2), (1, 1, 2), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

Here, the rank is s − r where the empty sequence has rank 0. Let V(m, n) denote the
number of such sequences of weight n and rank m and consider its generating function
[29, Eq. (3.1)]

V(x; q) := ∑
n≥0
m∈Z

V(m, n)xmqn = ∑
n≥0

(qn+1)nqn

(xq)n(q/x)n
(1.2.23)

which satisfies [29, Eq. (3.3)]

V(x; q) =
(1 − x)
(q)2

∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)rq(

r
2)+3rs+6(s

2)+2r+5s(1 − qr+2s+1)

1 − xqr . (1.2.24)
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Figure 1.3: The partition (4, 3, 1) with a Durfee square of size 2.

Remark 1.2.10. A partition of n has a Durfee square of size s if s is the largest number such
that the partition contains at least s parts with values ≥ s, e.g., see Figure 1.3. Kim and
Lovejoy obtain (1.2.23) combinatorially [29, Prop. 3.1] by first altering the summand using the
q-Chu-Vandermonde transformation, namely

(qn+1)n

(qx, q/x)n
= qn︸︷︷︸

c̄

n

∑
k=0

x−kqk2

(q/x)k

[
n
k

]
q︸ ︷︷ ︸

∑ ai

1
(qx)n−k︸ ︷︷ ︸

∑ bi

.

Then observe that any partition of size at most n can be defined by its Durfee square of size k,
a partition of weight at most k and a partition contained within k × (n − k) rectangle. This
is the ∑ ai sequence to the left of the peak c̄. The right-most sequence ∑ bi is then expressed in
terms of the Durfee square of size k. The generating function for V(x; q) is therefore consistent
with Figure 1.4.

qn

x−kqk2

1
(q/x)k

[
n
k

]
q

1
(qx)n−k

Figure 1.4: Construction of a sequence counted by V(x; q).
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For t, m ∈ Z with t ≥ 1, 0 ≤ m ≤ 3t − 1, consider the generalisation

ℓt,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)rq(

r
2)+3trs+3t(3t−1)(s

2)+(m+1)r+((3t
2 )+3t−1)s

× 1 − q(3t−2m)r+2(3t−1
2 )s+(3t−1

2 )

1 − xqr

(1.2.25)

and

V(m)
t (x; q) :=

(1 − x)
(q)2

∞
ℓt,m(x; q). (1.2.26)

By (1.2.24)–(1.2.26), V(1)
1 (x; q) = V(x; q). Before stating our last result, we recall the

following triple sums [36]

ga,b,c,d,e, f (x, y, z; q) :=

(
∑

r,s,t≥0
+ ∑

r,s,t<0

)
(−1)r+s+txrysztqa(r

2)+brs+c(s
2)+drt+est+ f (t

2)

(1.2.27)
where a, b, c, d, e and f are positive integers. These building blocks have appeared
in the context of the modularity of coefficients of open Gromov-Witten potentials of
elliptic orbifolds [16], unified WRT invariants of the Seifert manifolds constructed from
rational surgeries on the left-handed torus knots T∗

(2,2t+1) [27], false theta functions [30]

and mock theta functions [52]. Our last result exhibits that V(m)
t (x; q) is a sum of mixed

mock theta functions, mixed false theta series, the triple sums (1.2.27) and a modular
form.
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Theorem 1.2.11. Let t, m ∈ Z with t ≥ 1, 0 ≤ m ≤ 3t − 1. For generic x, we have

V(m)
t (x; q) =

(1 − x)(−1)tq(1−m)(1−3t)

(q)2
∞

f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

×
(

f1,1,3t(x−1q, (−1)t+1q3tm−m+1; q)
Θ(x; q)

− x−1 f1,1,3t(xq, (−1)t+1q3tm−m+1; q)
Θ(x−1; q)

)

+
(1 − x)
(q)2

∞

3t−2

∑
i=0

(−1)iq(
i+1

2 )+miΘ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

×
(
g1,1,3t,1,3t,1(x−1q, (−1)t+1q3mt+1−m, qi+1; q)

Θ(x; q)

− x−1g1,1,3t,1,3t,1(xq, (−1)t+1q3mt+1−m, qi+1; q)
Θ(x−1; q)

)

− Θ(−q(
3t−1

2 ); q3t(3t−1))

(q)2
∞

.

(1.2.28)

Remark 1.2.12. It is important to acknowledge that V(m)
t (x; q) can not be characterised as

neatly as the four other functions. By examining the Hecke-type double sums, we identify both
mixed false and mixed mock components. Also, it is not yet known if the triple sums in (1.2.28)
have explicit evaluations in terms of Appell-Lerch sums or false theta series. However, instances
of such triple sums have been identified as mixed false theta series [36].

Remark 1.2.13. The definitions of the two-parameter functions (1.2.5), (1.2.10), (1.2.25),
(1.2.3) and (1.2.20) may not be canonical but are constructed to satisfy two key properties.
The first being that if

f (m)
t (x; q) = ∑

r,s∈Z
sg(r, s)(−1)r+s qQ(r,s)

1 − xqL(r)

is one of the functions mentioned above, Q(r, s) is at most quadratic in r and s, and L(r) is
linear in r, then

∑
r,s∈Z

sg(r, s)(−1)r+sqQ(r,s)

is a modular form for all eligible t and m. The second condition being that the recurrences
ar − ar+d = br + cr seen in (3.1.15), (3.2.12) and (3.3.12) satisfy cr = 0 for all r ̸∈ [−d,−1].
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For example, an alternative definition of (1.2.15)

kt,m(x; q) :=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2(r

2)+2trs+(s
2)+4tr+2ms

1 − xq2r+1 (1.2.29)

implies cr ̸= 0 when r ∈ [2t − 1 − 2t2, t − 1] where t ≥ 1, i.e., the second condition fails.

The rest of this thesis is organised as follows. In Chapter 2, we illustrate the role of
Hecke-type double sums in characterising the modularity of q-series. In Chapter 3, we
prove Theorems 1.2.3, 1.2.5, 1.2.7, 1.2.9 and 1.2.11. In Chapter 4, we demonstrate that
the base cases of these results recover the partial theta identities (1.0.6)–(1.0.9). Finally,
in Chapter 5, we discuss some future directions of this work.



Chapter 2

Preliminaries

In order to prove the mixed mock (false) modularity of a given q-series, one can explic-
itly express it as a linear combination of terms of the form higi where hi is a modular
form, and gi is a known mixed mock modular (mixed false theta) building block. The
Hecke-type double sum (1.1.5) is a universal building block of which the modularity
can be determined.

2.1 Characterisation of Modularity

The results in this thesis utilise the fact that we can express the generating functions
in (1.2.3), (1.2.5), (1.2.7), (1.2.9) and (1.2.11) in terms of Hecke-type double sums (1.1.5).
Note that a, b, c may be positive rational numbers in (1.1.5) however we can make the
parameters integers by observing

fa,b,c(x, y; q) = fλa,λb,λc(x; y; q
1
λ )

where λ is the least common multiple of the denominators of a, b and c.
Sums of this form are useful because we can determine their modularity. Define

the discriminant of fa,b,c as D := b2 − ac. In 2014, Hickerson and Mortenson studied
specialisations of a, b, c ∈ Z>0 with D > 0 to reprove the mock theta conjectures. In
2023, Mortenson and Zwegers proved the following formula for D > 0 for arbitrary
positive integers a, b, c.

21
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Theorem 2.1.1 ( [35], Corollary 4.2). For D := b2 − ac > 0 and generic x and y, we have

fa,b,c(x, y; q) = ga,b,c(x, y,−1,−1; q) +
1

Θ(−1; qaD)Θ(−1; qcD)
ϑa,b,c(x, y; q) (2.1.1)

where

ga,b,c(x, y, z1, z0; q) :=
a−1

∑
i=0

(−y)iqc( i
2)Θ(qbix; qa)m(−qa(b+1

2 )−c(a+1
2 )−iD (−y)a

(−x)b , z0; qaD)

+
c−1

∑
i=0

(−x)iqa( i
2)Θ(qbiy; qc)m(−qc(b+1

2 )−a(c+1
2 )−iD (−x)c

(−y)b , z1; qcD),

ϑa,b,c(x, y; q) :=
b−1

∑
d∗=0

b−1

∑
e∗=0

qa(d−c/2
2 )+b(d−c/2)(e+a/2)+c(e+a/2

2 )(−x)d−c/2(−y)e+a/2

×
b−1

∑
f=0

qab2( f
2)+
(

a(bd+b2+ce)−ac(b+1)/2
)

f (−y)a f Θ(−qc(ad+be+a(b−1)/2+ab f )(−x)c; qcb2
)

× Θ(−qa((d+b(b+1)/2+b f )D+c(a−b)/2)(−x)−ac(−y)ab; qab2D)

× (qbD; qbD)3
∞Θ(qD(d+e)+ac−b(a+c)/2(−x)b−c(−y)b−a; qbD)

Θ(qDe+a(c−b)/2(−x)b(−y)−a; qbD)Θ(qDd+c(a−b)/2(−y)b(−x)−c; qbD)
,

d := d∗ + {c/2} and e := e∗ + {a/2} with 0 ≤ {α} < 1 denoting the fractional part of α.

Theorem 2.1.2 ( [37], Theorem 1.4). For D := b2 − ac < 0, we have

fa,b,c(x, y; q) =
1
2

(
a−1

∑
i=0

(−y)iqc( i
2)Θ(qbix; qa) ∑

r∈Z
sg(r)

(
qa(b+1

2 )−c(a+1
2 )−iD (−y)a

(−x)b

)r

q−aD(r+1
2 )

+
c−1

∑
i=0

(−x)iqa( i
2)Θ(qbiy; qc) ∑

r∈Z
sg(r)

(
qc(b+1

2 )−a(c+1
2 )−iD (−x)c

(−y)b

)r

q−cD(r+1
2 )

)
.

(2.1.2)
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Given Theorems 2.1.1 and 2.1.2, it is natural to ask “What modularity-type occurs when
D = 0?”. In this case, we prove that fa,b,c is a modular form. We prove this by first
showing that f1,1,1(x, y; q) is a modular form. We then show that fa,b,c(x, y; q) can be
expressed in terms of f1,1,1’s for all a, b, c ∈ Z>0 such that D = 0.

Lemma 2.1.3. Let x, y ∈ C× be generic. Then

f1,1,1(x, y; q) =
Θ(y; q)
1 − x

y
+

Θ(x; q)
1 − y

x
. (2.1.3)

Proof. Using (1.1.5), we have

f1,1,1(x, y; q) = ∑
r,s∈Z

sg(r, s)(−1)r+sq(
r
2)+rs+(s

2)xrys

= ∑
r,s≥0

(−1)r+sq(
r+s

2 )xrys − ∑
r,s<0

(−1)r+sq(
r+s

2 )xrys

+ ∑
r≥0,s<0

(−1)r+sq(
r+s

2 )xrys − ∑
r≥0,s<0

(−1)r+sq(
r+s

2 )xrys

= ∑
r≥0

xr ∑
s∈Z

(−1)r+sq(
r+s

2 )ys − ∑
s<0

ys ∑
r∈Z

(−1)r+sq(
r+s

2 )xr. (2.1.4)

Taking s 7→ s − r in the first sum in (2.1.4) and r 7→ r − s in the second sum in (2.1.4),
we obtain

∑
r≥0

xr ∑
s
(−1)sq(

s
2)ys−r − ∑

s<0
ys ∑

r
(−1)rq(

r
2)xr−s

= ∑
r≥0

(
x
y

)r
Θ(y; q)− ∑

s<0

(y
x

)s
Θ(x; q)

= ∑
r≥0

(
x
y

)r
Θ(y; q)− ∑

s≥0

(y
x

)−s−1
Θ(x; q)

=
Θ(y; q)
1 − x

y
−

(
x
y

)
Θ(x; q)

1 − x
y

=
Θ(y; q)
1 − x

y
+

Θ(x; q)
1 − y

x
.
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Theorem 2.1.4. Let a, b ∈ Z>0 and c ∈ Q>0 such that D := b2 − ac = 0 and gcd(a, b) = 1.
Also, let

x̄ :=

ζ2ax
1
a q−

1−a
2a if a even,

x
1
a q−

1−a
2a if a odd

; ȳ :=

ζ2by
1
b q−

1−b
2a if b even,

y
1
b q−

1−b
2a if b odd

where ζn := e
2πi
n and ln, kn are Bézout coefficients which arise as a solution of aln + bkn = n.

Then

fa,b,c(x, y; q) =

(
a−1

∑
i=0

b−1

∑
j=0

(
x̄
ȳ

)bki+j−j
)−1{

f1,1,1(x̄, ȳ; q
1
a ) +

a−1

∑
i=0

b−1

∑
j=0

(
x̄
ȳ

)bki+j−j
(2.1.5)

×

li+j−1

∑
m=0

(−x)mqa(m
2 )Θ(yqbm; qc) +

ki+j−1

∑
m=0

(−y)mqc(m
2 )Θ(xqbm; qa)

}.

(2.1.6)

In order to prove Theorem 2.1.4, we make use of the following result ( [25], Prop. 5.3).

Proposition 2.1.5. For x, y ∈ C∗ and l, k ∈ Z

fa,b,c(x, y, q) = (−x)l(−y)kqa( l
2)+blk+c(k

2) fa,b,c(qal+bkx, qbl+cky, q)

+
l−1

∑
m=0

(−x)mqa(m
2 )Θ(qmby; qc) +

k−1

∑
m=0

(−y)mqc(m
2 )Θ(qmbx; qa), (2.1.7)

Proof of Theorem 2.1.4. Firstly, since D = 0 and by scaling the indices of fa,b,c, we are
reduced to studying

fa,b,c(x, y; q) = f
a,b, b2

a
(x, y; q) (2.1.8)

= fa2,ab,b2(x, y; q
1
a ). (2.1.9)

We show that we can express fa2,ab,b2 in terms of f1,1,1 and then compute f1,1,1 explicitly.
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Taking (r, s) 7→ (ar + i, bs + j) for 0 ≤ i ≤ a − 1 and 0 ≤ j ≤ b − 1 yields

f1,1,1(x, y; q) = ∑
r,s

sg(r, s)(−1)r+sq(
r
2)+rs+(s

2)xrys

=
a−1

∑
i=0

b−1

∑
j=0

∑
r,s

sg(ar + i, bs + j)(−1)ar+i+bs+jq(
ar+i

2 )+(ar+i)(bs+j)+(bs+j
2 )xar+iybs+j

=
a−1

∑
i=0

b−1

∑
j=0

∑
r,s

sg(r, s)(−1)ar+i+bs+j

× qa2(r
2)+abrs+b2(s

2)+r
(
(a

2)+ai+aj
)
+s
(
(b

2)+bi+bj
)
+( i

2)+( j
2)+ijxar+iybs+j

=
a−1

∑
i=0

(−1)ixiq(
i
2)

b−1

∑
j=0

(−1)jyjq(
j
2)+ij ∑

r,s
sg(r, s)(−1)r+s

× qa2(r
2)+abrs+b2(s

2)+r
(
(a

2)+a(i+j)
)
+s
(
(b

2)+b(i+j)
)(
(−1)a−1xa)r(

(−1)b−1yb)s

=
a−1

∑
i=0

b−1

∑
j=0

(−1)i+jxiyjq(
i+j
2 ) fa2,ab,b2((−1)a−1xaq(

a
2)+a(i+j), (−1)b−1ybq(

b
2)+b(i+j); q).

(2.1.10)
The third equality in (2.1.10) uses the fact that sg(ar + i, s) = sg(r, s) = sg(r, bs + j)
when 0 ≤ i ≤ a − 1 and 0 ≤ j ≤ b − 1. Let l = li+j, k = ki+j as in Proposition 2.1.5 so
that ali+j + bki+j = i + j. Then by Proposition (2.1.5),

fa2,ab,b2((−1)a−1xaq(
a
2), (−1)b−1ybq(

b
2); q)

=
(
(−1)axaq(

a
2)
)li+j

(
(−1)bybq(

b
2)
)ki+j qa2(

li+j
2
)+abli+jki+k+b2(

ki+j
2
)

× fa2,ab,b2((−1)a−1xaq(
a
2)+a(i+j), (−1)b−1ybq(

b
2)+b(i+j); q)

+

li+j−1

∑
m=0

(−1)amxamqa2(m
2 )+m(a

2)Θ
(
(−1)b−1ybq(

b
2)+abm; qb2

)
+

ki+j−1

∑
m=0

(−1)bmybmqb2(m
2 )+m(b

2)Θ
(
(−1)a−1xaq(

a
2)+abm; qa2

)
.

(2.1.11)
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Rearranging yields

fa2,ab,b2((−1)a−1xaq(
a
2)+a(i+j), (−1)b−1ybq(

b
2)+b(i+j); q)

= (−1)ali+j+bki+j x−ali+j y−bki+j q
−a2

(
li+j

2

)
−abli+jki+k−b2

(
ki+j

2

)
−li+j(

a
2)−ki+j(

b
2)

×
{

fa2,ab,b2((−1)a−1xaq(
a
2), (−1)b−1ybq(

b
2); q)

−
li+j−1

∑
m=0

(−1)amxamqa2(m
2 )+m(a

2)Θ
(
(−1)b−1ybq(

b
2)+abm; qb2

)
−

ki+j−1

∑
m=0

(−1)bmybmqb2(m
2 )+m(b

2)Θ
(
(−1)a−1xaq(

a
2)+abm; qa2

) }
.

(2.1.12)

We can apply ali+j + bki+j = i + j to simplify the first term on the right-hand side to

(−1)i+j
(

x
y

)bki+j

q−(i+j
2 ) (2.1.13)

and substitute (2.1.12) into (2.1.10) to obtain

f1,1,1(x, y; q) = fa2,ab,b2((−1)a−1xaq(
a
2), (−1)b−1ybq(

b
2); q)

a−1

∑
i=0

b−1

∑
j=0

(
x
y

)bki+j−j

−
a−1

∑
i=0

b−1

∑
j=0

(
x
y

)bki+j−j
{li+j−1

∑
m=0

(−1)amxamqa2(m
2 )+m(a

2)Θ
(
(−1)b−1ybq(

b
2)+abm; qb2

)

+

ki+j−1

∑
m=0

(−1)bmybmqb2(m
2 )+m(b

2)Θ
(
(−1)a−1xaq(

a
2)+abm; qa2

)}
.

(2.1.14)

So, we can express fa2,ab,b2 in terms of f1,1,1 as follows:

fa2,ab,b2((−1)a−1xaq(
a
2), (−1)b−1ybq(

b
2); q) =

(
b−1

∑
j=0

(
x
y

)bki+j−j
)−1{

f1,1,1(x, y; q)

+
b−1

∑
j=0

(
x
y

)bki+j−j
[li+j−1

∑
m=0

(−1)amxamqa2(m
2 )+m(a

2)Θ
(
(−1)b−1ybq(

b
2)+abm; qb2

)

+

ki+j−1

∑
m=0

(−1)bmybmqb2(m
2 )+m(b

2)Θ
(
(−1)a−1xaq(

a
2)+abm; qa2

)]}
.

(2.1.15)
Combining (2.1.3) and (2.1.8), and taking (x, y) 7→ (x̄, ȳ) in (2.1.15) yields the result.
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Remark 2.1.6. When gcd(a, b) = λ ̸= 1, we can still use Theorem 2.1.4 by observing that

fa,b,c(x, y; q) = f a
λ , b

λ , c
λ
(x, y; qλ).

For instance, f4,6,9(x, y; q) = f2,3, 9
2
(x, y; q2).

Remark 2.1.7. In summary, Theorems 2.1.1, 2.1.2 and 2.1.4 state:

• If D > 0 then fa,b,c is mixed mock;

• If D < 0 then fa,b,c is mixed false; and

• If D = 0 then fa,b,c is a modular form.

We next address a result concerning identities satisfied by sg(r, s). We omit the
proof. Let

δ(r) :=

1 if r = 0,

0 otherwise.

Lemma 2.1.8. For r, s, t ∈ Z with t ≥ 1, we have

sg(−r,−s − 1) = −sg(r, s) + δ(r) (2.1.16)

and

sg(r − 1, s + 2t) = sg(r, s)− δ(r) +
2t

∑
i=1

δ(s + i). (2.1.17)

sg(r − (3t − 1), s + 1) = sg(r, s)−
3t−2

∑
i=0

δ(r − i) + δ(s + 1) (2.1.18)

and
sg(r, l) sg(r + 3tl, s) = sg(r, l) sg(r, s). (2.1.19)

We now recall the theta function identities

Θ(qn; q) = 0, (2.1.20)

Θ(qnx; q) = (−1)nq−(n
2)x−nΘ(x; q) (2.1.21)

and

∑
k∈Z

(−1)kq
1
2 k2+(n+ 1

2 )k

1 − xqk =
(q)3

∞
xnΘ(x; q)

(2.1.22)
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where n ∈ Z. While (2.1.20) and (2.1.21) easily follow from the definition of the theta
function, (2.1.22) follows from combining [7, Entry 3.2.1] with (2.1.20). Next, we turn
to providing alternative expressions for (1.2.10) and (1.2.15) which will be beneficial in
the proofs of Theorems 1.2.5 and 1.2.7, respectively. Let

H
(m)
t (x; q) := ∑

r,s∈Z
sg(r, s)(−1)r+s q(

r+1
2 )+2trs+(s+1

2 )+(t−m)r

1 − xqr , (2.1.23)

κt,m(x; q) := ∑
r,s∈Z

sg(r, s)(−1)r+s q2(r
2)+2trs+(s

2)+2tr+2ms

1 − xq2r+1 (2.1.24)

and

Φ(m)
t (x; q) := ∑

r,s∈Z
sg(r, s)(−1)r q(

r
2)+3trs+3t(3t−1)(s

2)+(m+1)r+((3t
2 )+3t−1)s

1 − xqr . (2.1.25)

Proposition 2.1.9. We have

ht,m(x; q) = H
(m)
t (x; q)− x−1H

(m)
t (x−1; q), (2.1.26)

kt,m(x; q) = x−1q−1
(

κt,m(x; q)− f2,2t,1(q2t, q2m; q)
)

. (2.1.27)

and

ℓt,m(x; q) = Φ(m)
t (x; q)− x−1Φ(m)

t (x−1; q)− 1
1 − x

Θ(−q(
3t−1

2 ); q3t(3t−1)). (2.1.28)

Proof. We first let (r, s) → (−r − 1,−s − 1) in H
(m)
t (x−1; q) and simplify to obtain

−xq1+m+t ∑
r,s∈Z

sg(−r − 1,−s − 1)(−1)r+s q(
r+1

2 )+2trs+(s+1
2 )+(m+t+1)r+2ts

1 − xqr+1 . (2.1.29)

Next, applying r → r − 1 to (2.1.29), then using (1.0.1) and (2.1.16) yields

−x ∑
r,s∈Z

sg(r, s)(−1)r+s q(
r+1

2 )+2trs+(s+1
2 )+(m+t)r

1 − xqr

and thus (2.1.26) follows. Using (1.1.5), one observes that

f2,2t,1(q2t, q2m; q) = κt,m(x; q)− xqkt,m(x; q)
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and so (2.1.27) follows. Now, let (r, s) → (−r − 1,−s − 1) in Φ(m)
t (x−1; q) and simplify

to get

xq ∑
r,s∈Z

sg(−r − 1,−s − 1)(−1)r

× q(
r+2

2 )+3t(r+1)(s+1)+3t(3t−1)(s+2
2 )−(m+1)(r+1)−((3t

2 )+3t−1)(s+1)+r

1 − xqr+1 .
(2.1.30)

Finally, applying r → r − 1 to (2.1.30), then (1.0.1), (2.1.16) and (2.1.21) yields

x ∑
r,s∈Z

sg(r, s)(−1)r q(
r
2)+3trs+3t(3t−1)(s

2)+(3t−m+1)r+ (3t−1)(9t−2)
2 s+(3t−1

2 )

1 − xqr

+
x

1 − x
Θ(−q(

3t−1
2 ); q3t(3t−1))

and so (2.1.28) follows.



Chapter 3

Proofs of Main Results

The method of proof is as follows [35]. First, we derive functional equations for each
of (1.2.5), (1.2.10), (1.2.15), (1.2.20), (1.2.25),

ĝt,m(x; q) := Θ(x; q)gt,m(x; q), (3.0.1)

Ĥ
(m)
t (x; q) := Θ(x; q)H(m)

t (x; q), (3.0.2)

κ̂t,m(x; q) := Θ(qx; q2)κt,m(x; q), (3.0.3)

p̂t,m(x; q) := Θ(x; q)pt,m(x; q) (3.0.4)

and
Φ̂(m)

t (x; q) := Θ(x; q)Φ(m)
t (x; q). (3.0.5)

Suitable care is required in constructing the sums (3.1.3), (3.2.3), (3.3.3), (3.4.3) and
(3.5.3) which favorably decompose in order to obtain these functional equations. We
then express each of (3.0.1)–(3.0.5) as a Laurent series in x ∈ C \ {0} and use the func-
tional equations to find an explicit formula for the coefficients in the Laurent series
expansion. After some sitzfleisch, these calculations eventually yield the right-hand
sides of (1.2.7), (1.2.12), (1.2.17), (1.2.22) and (1.2.28).

30
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3.1 Proof of Theorem 1.2.3
(

Modularity of U(m)
t (x; q)

)
For the first case, we begin with the following result.

Proposition 3.1.1. For t ∈ N and m ∈ Z with t ≡ m (mod 2), we have

gt,m(qx; q) = −x1−4t2
q

t−m−2t2−2tm
2 gt,m(x; q)

− x1−4t2− t+m
2 q

t−m−2t2−2tm
2

(q)3
∞

Θ(x; q)

2t

∑
i=1

(−1)iq
i2
2 −

1+t−m
2 ix2ti

− x1−4t2
q1−4t2

4t2−2

∑
k=0

xkqk f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

(3.1.1)

and

ĝt,m(qx; q) = x−4t2
q

t−m−2t2−2tm
2 ĝt,m(x; q)

+ x−4t2− t+m
2 q

t−m−2t2−2tm
2 (q)3

∞

2t

∑
i=1

(−1)iq
i2
2 −

1+t−m
2 ix2ti

+ x−4t2
q1−4t2

Θ(x; q)
4t2−2

∑
k=0

xkqk f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q).

(3.1.2)

Proof. The idea is to compute the sum

x4t2−1q
2t2−t+2tm+m

2 ∑
r,s∈Z

sg(r, s)(−1)r+sq
r2
2 +2trs+ s2

2 + 1+t+m
2 r+ 1+t−m

2 s 1 − x1−4t2
q(r+1)(1−4t2)

1 − xqr+1

(3.1.3)
in two ways. Expanding the numerator yields

x4t2−1q
2t2−t+2tm+m

2 gt,m(qx; q)

− ∑
r,s∈Z

sg(r, s)(−1)r+s q
r2
2 +2trs+ s2

2 + 1+t+m
2 r+ 1+t−m

2 s+1−3t2− t
2+tm+m

2

1 − xqr+1 .

(3.1.4)
Taking (r, s) → (r − 1, s + 2t) in the second sum in (3.1.4) and using (2.1.17), (2.1.20)
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and (2.1.22) leads to

− ∑
r,s∈Z

sg(r − 1, s + 2t)(−1)r+s q
r2
2 +2trs+ s2

2 + 1+t+m
2 r+ 1+t−m

2 s

1 − xqr

= − ∑
r,s∈Z

sg(r, s)(−1)r+s q
r2
2 +2trs+ s2

2 + 1+t+m
2 r+ 1+t−m

2 s

1 − xqr +
1

1 − x ∑
s∈Z

(−1)sq
s2+(1+t−m)s

2

−
2t

∑
i=1

∑
r∈Z

(−1)r−i q
r2
2 −2tri+ i2

2 +
1+t+m

2 r− 1+t−m
2 i

1 − xqr

= −gt,m(x; q)− x−
t+m

2 (q)3
∞

Θ(x; q)

2t

∑
i=1

(−1)iq
i2
2 −

1+t−m
2 ix2ti.

(3.1.5)

Alternatively, we use

1 − x1−4t2
q(r+1)(1−4t2)

1 − xqr+1 = −x1−4t2
q(r+1)(1−4t2)

4t2−2

∑
k=0

xkqk(r+1) (3.1.6)

to express (3.1.3) as

− q
−6t2−t+2tm+m

2 +1
4t2−2

∑
k=0

xkqk ∑
r,s∈Z

sg(r, s)(−1)r+sq
r2
2 +2trs+ s2

2 + 1+t+m+2−8t2+2k
2 r+ 1+t−m

2 r+r(1−4t2)

= −q
−6t2−t+2tm+m

2 +1
4t2−2

∑
k=0

xkqk f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q).

(3.1.7)
Combining (3.1.4), (3.1.5) and (3.1.7) gives us (3.1.1). Finally, (3.1.2) follows from (2.1.21),
(3.0.1) and (3.1.1).

We are now in a position to prove our first result.

Proof of Theorem 1.2.3. Note that ĝt,m(x) = ĝt,m(x; q) does not have poles and so we
may write

ĝt,m(x) = ∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx−r (3.1.8)
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for all x ∈ C \ {0}. Substituting (3.1.8) into (3.1.2), we obtain

∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
r−rarx−r = x−4t2

q
t−m−2t2−2tm

2 ∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx−r

+ x−4t2− t+m
2 q

t−m−2t2−2tm
2 (q)3

∞

2t

∑
i=1

(−1)iq
i2
2 −

1+t−m
2 ix2ti

+ x−4t2
q1−4t2

Θ(x; q)

×
4t2−2

∑
k=0

xkqk f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q).

(3.1.9)
Using (

a − b
2

)
=

(
a
2

)
− ab +

(
b + 1

2

)
(3.1.10)

and (1.0.1), one can check that the last sum on the right-hand side of (3.1.9) can be
written as

q1−4t2
∑
r∈Z

(−1)rq(
r+1

2 )
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+r(k−4t2)+k f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)x−r.

(3.1.11)
We now let r → r − 4t2 in the first term on the right-hand side of (3.1.9), apply (3.1.11)
and then compare coefficients of x−r in the resulting expressions to arrive at the recur-
rence relation

ar = ar−4t2 + b′r + c′r (3.1.12)

where

b′r := q1−4t2+(r+1
2 )− r2

8t2
− t−m+2t2−2tm−8t2

8t2
r−4t2r

4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+1)

× f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

and

c′r := (−1)i+ t+m
2 (q)3

∞q
i2
2 −

1+t−m
2 i−(

4t2+ t+m
2 −2ti)

2

8t2
− t−m+2t2−2tm−8t2

8t2 (4t2+ t+m
2 −2ti)+ t−m−2t2−2tm

2

if r = 4t2 + t+m
2 − 2ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, using (1.2.5), (3.0.1)
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and Cauchy’s integral formula applied to (3.1.8), a short calculation gives

ar = − 1
2πi

q
4t2−1

8t2
r2− t−m+2t2−2tm

8t2
r
∮

∑
λ∈Z

(−1)λq(
λ+1

2 )−λr

× ∑
n,s∈Z

sg(n, s)(−1)n+s q
n2
2 +2tns+ s2

2 + t+1+m
2 n+ t+1−m

2 s

1 − zqn dz

(3.1.13)
where the integration is over a closed contour around 0 in C. Thus, as |q| < 1,

lim
r→±∞

ar = 0. (3.1.14)

Now, observe that (3.1.12) is equivalent to

ar − ar+4t2 = br + cr (3.1.15)

where br := −b′r+4t2 and cr := −c′r+4t2 . We now claim that

ar = ∑
l∈Z

sg(r, l)br+4t2l. (3.1.16)

To deduce this, we let αr := q
r2

8t2
+ t−m+2t2−2tm

8t2
rar and use (3.1.15) to obtain

αr = q−r−2t2− t−m+2t2−2tm
8t2 αr+4t2 + q

r2

8t2
+ t−m+2t2−2tm

8t2
rbr + q

r2

8t2
+ t−m+2t2−2tm

8t2
rcr. (3.1.17)

In fact, we will demonstrate

αr = q
r2

8t2
+ t−m+2t2−2tm

8t2
r ∑

l∈Z
sg(r, l)br+4t2l

which clearly implies (3.1.16). Let

ãr := ∑
l∈Z

sg(r, l)br+4t2l

and

α̃r := q
r2

8t2
+ t−m+2t2−2tm

8t2
r ãr.

Then ãr and α̃r satisfy (3.1.15) and (3.1.17), respectively. The former follows from

ãr − ãr+4t2 = ∑
l∈Z

(
sg(r, l)− sg(r + 4t2, l − 1)

)
br+4t2l

= ∑
l∈Z

(
δ(l)− δ(r + 1)− · · · − δ(r + 4t2)

)
br+4t2l

= br −
(

δ(r + 1) + · · ·+ δ(r + 4t2)
)

∑
n≡r (mod 4t2)

bn

(3.1.18)
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and

∑
n≡r (mod 4t2)

bn = ∑
n≡r (mod 4t2)

(an − an+4t2 − cn) = − ∑
n≡r (mod 4t2)

cn = −cr (3.1.19)

where we have used (3.1.14), the definitions of cr and c′r and that −t ≤ m ≤ 3t − 2.
Now, since limr→±∞ αr = 0 and limr→∞ α̃r = 0, we have

lim
r→∞

(αr − α̃r) = 0. (3.1.20)

Finally, we compute

αr − α̃r − qr+2t2+ t−m+2t2−2tm
8t2

(
αr−4t2 − α̃r−4t2

)
= 0

which in combination with (3.1.20) implies that αr = α̃r and so ar = ãr. In total,

ĝt,m(x) = ∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx−r

= ∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
r ∑

l∈Z
sg(r, l)br+4t2lx

−r

= −q1−4t2
∑

r,l∈Z
sg(r, l)(−1)rq(

r+4t2(l+1)+1
2 )− (r+4t2(l+1))2

8t2
− t−m+2t2−2tm−8t2

8t2
(r+4t2(l+1))

× q−4t2(r+4t2(l+1))
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+4t2(l+1)+1)+ r2

8t2
+ t−m+2t2−2tm

8t2
r

× f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)x−r

= q1−t2−8t4− t−m
2 +tm

4t2−2

∑
k=0

(−1)k+1q(
k+1−4t2

2 )+k+4t2k f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

× ∑
r,l∈Z

sg(r, l)(−1)rq
r2
2 +(4t2−1)rl+2t2l2(4t2−1)+(k+ 1

2 )r+(t2− t−m
2 +tm+4t2k)lx−r

= q1−3t2− t−m
2 +tm

4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q4t2k−t2+tm− t−m
2 +8t4

; q).
(3.1.21)

Thus, (1.2.7) follows from (1.2.6), (3.0.1) and (3.1.21). We now apply (2.1.1) and (2.1.20)
to deduce that f1,2t,1 is a modular form and (2.1.2) to obtain that f1,4t2−1,4t2(4t2−1) is a
false theta function.
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3.2 Proof of Theorem 1.2.5
(

Modularity of W(m)
t (x; q)

)
For the second case, we begin with the following result.

Proposition 3.2.1. For t ∈ N and m ∈ Z, we have

H
(m)
t (qx; q) = −x1−4t2

qm−2t2
H

(m)
t (x; q)− x1−4t2+m−tqm−2t2 (q)3

∞
Θ(x; q)

2t

∑
i=1

(−1)iq(
i
2)x2ti

− x1−4t2
q1−4t2

4t2−2

∑
i=0

xkqk f1,2t,1(qt−m+2−4t2+k, q; q)

(3.2.1)
and

Ĥ
(m)
t (qx; q) = x−4t2

qm−2t2
Ĥ

(m)
t (x; q) + x−4t2+m−tqm−2t2

(q)3
∞

2t

∑
i=1

(−1)iq(
i
2)x2ti

+ x−4t2
q1−4t2

Θ(x; q)
4t2−2

∑
i=0

xkqk f1,2t,1(qt−m+2−4t2+k, q; q).

(3.2.2)

Proof. We first compute the sum

x4t2−1q2t2−mt ∑
r,s∈Z

sg(r, s)(−1)r+sq(
r+1

2 )+2trs+(s+1
2 )+(t−m)r 1 − x1−4t2

q(r+1)(1−4t2)

1 − xqr+1 (3.2.3)

in two ways. Expanding the numerator yields

x4t2−1q2t2−mH
(m)
t (qx; q)− ∑

r,s∈Z
sg(r, s)(−1)r+s q(

r+1
2 )+2trs+(s+1

2 )+(t−m)r+(r+1)(1−4t2)+2t2−m

1 − xqr+1 .

(3.2.4)
Taking (r, s) → (r − 1, s + 2t) in the second sum in (3.2.4) and using (2.1.17), (2.1.20)
and (2.1.22) yields

− ∑
r,s∈Z

sg(r − 1, s + 2t)(−1)r+s q(
r+1

2 )+2trs+(s+1
2 )+(t−m)r

1 − xqr

= −H
(m)
t (x; q)− xm−t(q)3

∞
Θ(x; q)

2t

∑
i=1

(−1)iq(
i
2)x2ti.

(3.2.5)
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Alternatively, we use (3.1.6) to express (3.2.3) as

−q1−2t2−m
4t2−2

∑
k=0

xkqk f1,2t,1(qt−m+2−4t2+k, q; q). (3.2.6)

Combining (3.2.4)–(3.2.6) gives us (3.2.1). Finally, (3.2.2) follows from (2.1.21) and
(3.2.1).

We can now prove our second main result.

Proof of Theorem 1.2.5. As Ĥ(m)
t (x) = Ĥ

(m)
t (x; q) does not have poles, we write

Ĥ
(m)
t (x) = ∑

r∈Z
(−1)rq

r2

8t2
+ mr

4t2 arx−r (3.2.7)

for all x ∈ C \ {0}. Substituting (3.2.7) into (3.2.2), we obtain

∑
r∈Z

(−1)rq
r2

8t2
+ mr

4t2
−rarx−r = x−4t2

qm−2t2
∑
r∈Z

(−1)rq
r2

8t2
+ mr

4t2 arx−r

+ x−4t2+m−tqm−2t2
(q)3

∞

2t

∑
i=1

(−1)iq(
i
2)x2ti

+ x−4t2
q1−4t2

Θ(x; q)
4t2−2

∑
k=0

xkqk f1,2t,1(qt−m+2−4t2+k, q; q).

(3.2.8)
Using (1.0.1) and (3.1.10), the last sum on the right-hand side of (3.2.8) can be written
as

q1−4t2
∑
r∈Z

(−1)rq(
r+1

2 )
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+r(k−4t2)+k f1,2t,1(qt−m+2−4t2+k, q; q)x−r. (3.2.9)

We now let r → r − 4t2 in the first term on the right-hand side of (3.2.8), apply (3.2.9)
and then compare coefficients of x−r in the resulting expressions to arrive at the recur-
rence relation

ar = ar−4t2 + b′r + c′r (3.2.10)

where

b′r := q1−4t2+(r+1
2 )− r2

8t2
−mr

4t +r(1−4t2)
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+1) f1,2t,1(qt−m+2−4t2+k, q; q)
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and

c′r := (−1)i+m+t(q)3
∞qm−2t2+( i

2)−
(4t2−m+t−2ti)2

8t2
− m

4t2
(4t2−m+t−2ti)+(4t2−m+t−2ti)

if r = 4t2 −m+ t− 2ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, a similar computation
as in (3.1.13) implies

lim
r→±∞

ar = 0. (3.2.11)

Now, observe that (3.2.10) is equivalent to

ar − ar+4t2 = br + cr (3.2.12)

where br := −b′r+4t2 and cr := −c′r+4t2 . We now claim that

ar = ∑
l∈Z

sg(r, l)br+4t2l. (3.2.13)

To deduce this, we let αr := q
r2

8t2
+ mr

4t2 ar and use (3.2.12) to obtain

αr = q−r−2t2−mαr+4t2 + q
r2

8t2
+ mr

4t2 br + q
r2

8t2
+ mr

4t2 cr. (3.2.14)

We will show

αr = q
r2

8t2
+ mr

4t2 ∑
l∈Z

sg(r, l)br+4t2l

which clearly implies (3.2.13). Let

ãr := ∑
l∈Z

sg(r, l)br+4t2l

and

α̃r := q
r2

8t2
+ mr

4t2 ãr.

Then ãr and α̃r satisfy (3.2.12) and (3.2.14), respectively, via the same calculation as in
(3.1.18) and (3.1.19) where we use (3.2.11) and 1 − t ≤ m ≤ t. In addition,

lim
r→∞

(αr − α̃r) = 0. (3.2.15)

Finally, we observe

αr − α̃r − qr+2t2+m (αr−4t2 − α̃r−4t2
)
= 0
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which in combination with (3.2.15) implies that αr = α̃r and so ar = ãr. In total,

Ĥ
(m)
t (x) = ∑

r∈Z
(−1)rq

r2

8t2
+ mr

4t2 arx−r

= ∑
r∈Z

(−1)rq
r2

8t2
+ mr

4t2 ∑
l∈Z

sg(r, l)br+4t2lx
−r

= q1−m−8t4
∑

r,l∈Z
sg(r, l)(−1)rq(

r
2)+(4t2−1)rl+4t2(4t2−1)( l

2)+r+(8t4−m)l

×
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+kr+4t2kl+4t2k+k f1,2t,1(qt−m+2−4t2+k, q; q)

= q1−m−2t2
4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(qt−m+2−4t2+k, q; q)

× ∑
r,l∈Z

sg(r, l)(−1)rq(
r
2)+(4t2−1)rl+4t2(4t2−1)( l

2)+(k+1)r+(8t4−m+4t2k)lx−r

= q1−m−2t2
4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(qt−m+2−4t2+k, q; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q8t4−m+4t2k; q).
(3.2.16)

Thus, (1.2.12) follows from (1.2.11), (2.1.23), (2.1.26), (3.0.2) and (3.2.16). We now apply
(2.1.1) and (2.1.20) to deduce that f1,2t,1 is a modular form and (2.1.2) to obtain that
f1,4t2−1,4t2(4t2−1) is a false theta function.

3.3 Proof of Theorem 1.2.7
(

Modularity of V(m)
t (x; q)

)
For the third case, we begin with the following result.

Proposition 3.3.1. For t ∈ N and m ∈ Z, we have

κt,m(q2x; q) = −x1−2tq3−4t2−3t+4tmκt,m(x; q)

− x−2t2−t+2q4−4t2−4t+4tm (q2; q2)3
∞

Θ(qx; q2)

2t

∑
i=1

(−1)iq(
i+1

2 )−2mi+tixti

− x1−2t2
q3−6t2

2t2−2

∑
k=0

xkq3k f2,2t,1(q2t+2−4t2+2k, q2m; q)

(3.3.1)
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and

κ̂t,m(q2x; q) = x−2t2
q2−4t2−3t+4tmκ̂t,m(x; q)

+ x−2t2−t+1q3−4t2−4t+4tm(q2; q2)3
∞

2t

∑
i=1

(−1)iq(
i+1

2 )−2mi+tixti

+ x−2t2
q2−6t2

Θ(qx; q2)
2t2−2

∑
k=0

xkq3k f2,2t,1(q2t+2−4t2+2k, q2m; q).

(3.3.2)

Proof. We first compute the sum

x2t2−1q−3+4t2+3t−4tm ∑
r,s∈Z

sg(r, s)(−1)r+sq2(r
2)+2trs+(s

2)+2tr+2ms 1 − x1−2t2
q(2r+3)(1−2t2)

1 − xq2r+3

(3.3.3)
in two ways. Expanding the numerator yields

x2t2−1q−3+4t2+3t−4tmκt,m(q2x; q)

− ∑
r,s∈Z

sg(r, s)(−1)r+s q2(r
2)+2trs+(s

2)+2tr+2ms−2t2+3t+2r−4t2r−4tm

1 − xq2r+3 .

(3.3.4)
Taking (r, s) → (r − 1, s + 2t) in the second sum in (3.3.4) and using (2.1.17), (2.1.20)
and (2.1.22) yields

− ∑
r,s∈Z

sg(r − 1, s + 2t)(−1)r+s q2(r
2)+2trs+(s

2)+2tr+2ms

1 − xq2r+1

= −κt,m(x; q)− (qx)1−t(q2; q2)3
∞

Θ(qx; q2)

2t

∑
i=1

(−1)iq(
i+1

2 )−2mi+tixti.

(3.3.5)
Alternatively, we use

1 − x1−2t2
q(2r+3)(1−2t2)

1 − xq2r+3 = −x1−2t2
q(2r+3)(1−2t2)

2t2−2

∑
k=0

xkq(2r+3)k

to express (3.3.3) as

−q−2t2+3t−4tm
2t2−2

∑
k=0

xkq3k f2,2t,1(q2t+2−4t2+2k, q2m; q). (3.3.6)

Combining (3.3.4)–(3.3.6) gives us (3.3.1). Finally, (3.3.2) follows from (2.1.21) and
(3.3.1).
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We can now prove our third result.

Proof of Theorem 1.2.7. As κ̂t,m(x) = κ̂t,m(x; q) does not have poles, we write

κ̂t,m(x) = ∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx−r (3.3.7)

for all x ∈ C \ {0}. Substituting (3.3.7) into (3.3.2), we obtain

∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
r−2rarx−r = x−2t2

q2−4t2−3t+4tm ∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx−r

+ x−2t2−t+1q3−4t2−4t+4tm(q2; q2)3
∞

2t

∑
i=1

(−1)iq(
i+1

2 )−2mi+tixti

+ x−2t2
q2−6t2

Θ(qx; q2)
2t2−2

∑
k=0

xkq3k f2,2t,1(q2t+2−4t2+2k, q2m; q).

(3.3.8)
Using (1.0.1) and (3.1.10), the last sum on the right-hand side of (3.3.8) can be written
as

q2−6t2+4t4
∑
r∈Z

(−1)rqr2−4t2r
2t2−2

∑
k=0

(−1)kqk2+3k+2rk−4t2k f2,2t,1(q2t+2+(2r−4t2)k, q2m; q)x−r.

(3.3.9)
We now let r → r − 2t2 in the first term on the right-hand side of (3.3.8), apply (3.3.9)
and then compare coefficients of x−r in the resulting expressions to arrive at the recur-
rence relation

ar = ar−2t2 + b′r + c′r (3.3.10)

where

b′r := q2+4t4−6t2+r2−4t2r− r2

2t2
+ 2t2−2+3t−4tm

2t2
r+2r

×
2t2−2

∑
k=0

(−1)kqk2+3k+(2r−4t2)k f2,2t,1(q2t+2−4t2+2k, q2m; q)

and

c′r := (−1)i+t+ti+1(q2; q2)3
∞q3−4t2−4t+4tm+(i+1

2 )−2mi+ti− (2t2+t−1−ti)2

2t2
+ 6t2−2+3t−4tm

2t2
(2t2+t−1−ti)

if r = 2t2 + t − 1 − ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, a similar computation
as in (3.1.13) implies

lim
r→±∞

ar = 0. (3.3.11)
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Now, observe that (3.3.10) is equivalent to

ar − ar+2t2 = br + cr (3.3.12)

where br := −b′r+2t2 and cr := −c′r+2t2 . We now claim that

ar = ∑
l∈Z

sg(r, l)br+2t2l. (3.3.13)

To deduce this, we let αr := q
r2

2t2
− 2t2−2+3t−4tm

2t2
rar and use (3.3.12) to obtain

αr = q−2r−2+3t−4tmαr+2t2 + q
r2

2t2
− 2t2−2+3t−4tm

2t2
rbr + q

r2

2t2
− 2t2−2+3t−4tm

2t2
rcr. (3.3.14)

We will show

αr = q
r2

2t2
− 2t2−2+3t−4tm

2t2
r ∑

l∈Z
sg(r, l)br+2t2l

which clearly implies (3.3.13). Let

ãr := ∑
l∈Z

sg(r, l)br+2t2l

and

α̃r := q
r2

2t2
− 2t2−2+3t−4tm

2t2
r ãr.

Then ãr and α̃r satisfy (3.3.10) and (3.3.14), respectively, via the same calculation as
in (3.1.18) and (3.1.19) with r + 4t2 and r + 4t2l replaced with r + 2t2 and r + 2t2l,
respectively, and (3.3.11). So,

lim
r→∞

(αr − α̃r) = 0. (3.3.15)

Finally, we observe

αr − α̃r − q2r+2−3t+4tm (αr−2t2 − α̃r−2t2
)
= 0
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which in combination with (3.3.15) implies that αr = α̃r and so ar = ãr. In total,

κ̂t,m(x) = ∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx−r

= ∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
r ∑

l∈Z
sg(r, l)br+2t2lx

−r

= q2+4t4−6t2
∑

r,l∈Z
sg(r, l)(−1)rq(r+2t2(l+1))2−4t2(r+2t2(l+1))− (r+2t2(l+1))2

2t2

× q
2t2−2+3t−4tm

2t2
(r+2t2(l+1))+2(r+2t2(l+1))

2t2−2

∑
k=0

(−1)k+1qk2+3k+(2(r+2t2(l+1))−4t2)k+ r2

2t2

× q−
2t2−2+3t−4tm

2t2
r f2,2t,1(q2t+2−4t2+2k, q2m; q)

= q−2t2+3t−4tm
2t2−2

∑
k=0

(−1)k+1qk2+3k f2,2t,1(q2t+2−4t2+2k, q2m; q)

× ∑
r,l∈Z

sg(r, l)(−1)rqr2+(4t2−2)rl+2t2l2(2t2−1)+2kr+(4t2k+2t2−2+3t−4tm)lx−r

= q−2t2+3t−4tm
2t2−2

∑
k=0

(−1)k+1qk2+3k f2,2t,1(q2t+2−4t2+2k, q2m; q)

× f1,2t2−1,2t2(2t2−1)(x−1q2k+1,−q4t2k−2+3t−4tm+4t4
; q2).

(3.3.16)
Thus, (1.2.17) follows from (1.2.16), (2.1.24), (2.1.27), (3.0.3) and (3.3.16). We now apply
(2.1.1) and (2.1.20) to deduce that f2,2t,1 is a modular form and (2.1.2) to obtain that
f1,2t2−1,2t2(2t2−1) is a false theta function.

3.4 Proof of Theorem 1.2.9
(

Modularity of O(m)
t (x; q)

)
For our fourth case, we start with the following result.
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Proposition 3.4.1. For t ∈ N and m ∈ Z, we have

pt,m(qx; q) = −x1−4t2
q(m−1)(2t−1)pt,m(x; q)

− x1−4t2−t−m+1q(m−1)(2t−1) (q)3
∞

Θ(x; q)

2t

∑
i=1

(−1)iq(
i+1

2 )−i(t+m)x2ti

− x1−4t2
q1−4t2

4t2−2

∑
k=0

xkqk f1,2t,1(qt+m+1−4t2+k, qt+m; q)

(3.4.1)

and

p̂t,m(qx; q) = x−4t2
q(m−1)(2t−1) p̂t,m(x; q)

+ x−4t2−t−m+1q(m−1)(2t−1)(q)3
∞

2t

∑
i=1

(−1)iq(
i+1

2 )−i(t+m)x2ti

+ x−4t2
q1−4t2

Θ(x; q)
4t2−2

∑
k=0

xkqk f1,2t,1(qt+m+1−4t2+k, qt+m; q).

(3.4.2)

Proof. We first compute the sum

x4t2−1q−(m−1)(2t−1) ∑
r,s∈Z

sg(r, s)(−1)r+sq(
r
2)+2trs+(s

2)+(t+m)(r+s) 1 − x1−4t2
q(r+1)(1−4t2)

1 − xqr+1

(3.4.3)
in two ways. Expanding the numerator yields

x4t2−1q−(m−1)(2t−1)pt,m(qx; q)

− ∑
r,s∈Z

sg(r, s)(−1)r+s q(
r
2)+2trs+(s

2)+(t+m+1−4t2)r+(t+m)s−(m−1)(2t−1)+1−4t2

1 − xqr+1 .
(3.4.4)

Taking (r, s) → (r − 1, s + 2t) in the second sum in (3.4.4) and using (2.1.17), (2.1.20)
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and (2.1.22) leads to

− ∑
r,s∈Z

sg(r − 1, s + 2t)(−1)r+s q(
r
2)+2trs+(s

2)+(t+m)r+(t+m)s

1 − xqr

= − ∑
r,s∈Z

sg(r, s)(−1)r+s q(
r
2)+2trs+(s

2)+(t+m)r+(t+m)s

1 − xqr +
1

1 − x ∑
s∈Z

(−1)sq(
s
2)+(t+m)s

−
2t

∑
i=1

∑
r∈Z

(−1)r−i q(
r
2)−2tri+(i+1

2 )+(t+m)r−(t+m)i

1 − xqr

= −pt,m(x; q)− x−t−m+1(q)3
∞

Θ(x; q)

2t

∑
i=1

(−1)iq(
i+1

2 )−(t+m)ix2ti.

(3.4.5)
Alternatively, we use (3.1.6) to express (3.4.3) as

− q−(m−1)(2t−1)+1−4t2
4t2−2

∑
k=0

xkqk ∑
r,s∈Z

sg(r, s)(−1)r+sq(
r
2)+2trs+(s

2)+(t+m)(r+s)+r(1−4t2+k)

= −q−(m−1)(2t−1)+1−4t2
4t2−2

∑
k=0

xkqk f1,2t,1(qt+m+1−4t2+k, qt+m; q).

(3.4.6)
Combining (3.4.4)–(3.4.6) gives us (3.4.1). Finally, (3.4.2) follows from (2.1.21), (3.0.4)
and (3.4.1).

We can now prove our fourth result.

Proof of Theorem 1.2.9. As p̂t,m(x) = p̂t,m(x; q) does not have poles, we write

p̂t,m(x) = ∑
r∈Z

(−1)rq
r2

8t2
+ 2t2+(m−1)(2t−1)

4t2
rarx−r (3.4.7)

for all x ∈ C \ {0}. Substituting (3.4.7) into (3.4.2), we obtain

∑
r∈Z

(−1)rq
r2

8t2
+ 2t2+(m−1)(2t−1)

4t2
r−rarx−r = x−4t2

q(m−1)(2t−1) ∑
r∈Z

(−1)rq
r2

8t2
+ 2t2+(m−1)(2t−1)

4t2
rarx−r

+ x−4t2+1−t−mq(m−1)(2t−1)(q)3
∞

2t

∑
i=1

(−1)iq(
i+1

2 )−(t+m)ix2ti

+ x−4t2
q1−4t2

Θ(x; q)
4t2−2

∑
k=0

xkqk f1,2t,1(qt+m+1−4t2+k, qt+m; q).

(3.4.8)
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Using (1.0.1) and (3.1.10), the last sum on the right-hand side of (3.4.8) can be written
as

q1−4t2
∑
r∈Z

(−1)rq(
r+1

2 )
4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+r(k−4t2)+k f1,2t,1(qt+m+1−4t2+k, qt+m; q)x−r.

(3.4.9)
We now let r → r − 4t2 in the first term on the right-hand side of (3.4.8), apply (3.4.9)
and then compare coefficients of x−r in the resulting expressions to arrive at the recur-
rence relation

ar = ar−4t2 + b′r + c′r

where

b′r := q1−4t2+(r+1
2 )− r2

8t2
− 2t2+(m−1)(2t−1)−4t2

4t2
r−4t2r

4t2−2

∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+1)

× f1,2t,1(qt+m+1−4t2+k, qt+m; q)

and

c′r := (−1)i+1+t+m(q)3
∞

× q(m−1)(2t−1)+(i+1
2 )−(t+m)i− (4t2−1+t+m−2ti)2

8t2
− 2t2+(m−1)(2t−1)−4t2

4t2
(4t2−1+t+m−2ti)

if r = t + m − 1 − 2ti, 1 ≤ i ≤ 2t and is 0 otherwise. As before, we have

ar = ∑
l∈Z

sg(r, l)br+4t2l
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where br := −b′r+4t2 and so in total

p̂t,m(x) = ∑
r∈Z

(−1)rq
r2

8t2
+ 2t2+(m−1)(2t−1)

4t2
rarx−r

= ∑
r∈Z

(−1)rq
r2

8t2
+ 2t2+(m−1)(2t−1)

4t2
r ∑

l∈Z
sg(r, l)br+4t2lx

−r

= q1−4t2−(m−1)(2t−1)
4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(qt+m+1−4t2+k, qt+m; q)

× ∑
r,l∈Z

sg(r, l)(−1)rq
r2
2 +(4t2−1)rl+2t2l2(4t2−1)+(k+ 1

2 )r+(−(m−1)(2t−1)+4t2k)lx−r

= q1−4t2−(m−1)(2t−1)
4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(qt+m+1−4t2
, qt+m; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q8t4−2t2−(m−1)(2t−1)+4t2k; q).
(3.4.10)

Thus, (1.2.22) follows from (1.2.21), (3.0.4) and (3.4.10). We now apply (2.1.1) and
(2.1.20) to deduce that f1,2t,1 is a modular form and (2.1.2) to obtain that f1,4t2−1,4t2(4t2−1)

is a false theta function.

3.5 Proof of Theorem 1.2.11
(

Modularity of V(m)
t (x; q)

)
For our last case, we start with the following result.

Proposition 3.5.1. For t ∈ N and m ∈ Z, we have

Φ(m)
t (q3t−1x) = (−1)t+1x−1q−m(3t−1)Φ(m)

t (x)

+ (−1)tx−1q−m(3t−1)
3t−2

∑
i=0

(−1)i q(
i+1

2 )+mi

1 − xqi Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

+ (−1)t+1x3t−m−1q
(3t−1)(3t−2m−2)

2
(q)3

∞
Θ(x; q)

− x−1q1−3t f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

(3.5.1)
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and

Φ̂(m)
t (q3t−1x) = x−3tq−(3t−1

2 )−m(3t−1)Φ̂(m)
t (x)

− x−3tq−(3t−1
2 )−m(3t−1)

3t−2

∑
i=0

(−1)iq(
i+1

2 )+miΘ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

× f1,1,1(qx−1, qi+1; q)

+ x−mq−m(3t−1)(q)3
∞

+ (−1)tx−3tq−(3t
2 )Θ(x; q) f1,3t,3t(3t−1)(q

m,−q(
3t
2 )+3t−1; q).

(3.5.2)

Proof. We first compute the sum

∑
r,s∈Z

sg(r, s)(−1)rq(
r
2)+3trs+3t(3t−1)(s

2)+(m+1)r+((3t
2 )+3t−1)s 1 − x−1q−(r+3t−1)

1 − xqr+3t−1 (3.5.3)

in two ways. Expanding the numerator yields

Φ(m)
t (q3t−1x)− x−1q−3t+1 ∑

r,s∈Z
sg(r, s)(−1)r q(

r
2)+3trs+3t(3t−1)(s

2)+mr+((3t
2 )+3t−1)s

1 − xqr+3t−1 . (3.5.4)

Taking (r, s) → (r − (3t − 1), s + 1) in the second sum in (3.5.4) and using (2.1.17),
(2.1.20) and (2.1.22) leads to

(−1)t+1q−(m−1)(3t−1)

× ∑
r,s∈Z

sg(r − (3t − 1), s + 1)(−1)r q(
r
2)+3trs+3t(3t−1)(s

2)+(m+1)r+((3t
2 )+3t−1)s

1 − xqr

= (−1)t+1q−(m−1)(3t−1)Φ(m)
t (x)

+ (−1)tq−(m−1)(3t−1)
3t−2

∑
i=0

(−1)i q(
i
2)+(m+1)i

1 − xqi Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

+ (−1)t+1x3t−mq
(3t−1)(3t−2m−2)

2
(q)3

∞
Θ(x; q)

.

(3.5.5)

Alternatively, we use

1 − x−1q−(r+3t−1)

1 − xqr+3t−1 = −x−1q−(r+3t−1) (3.5.6)
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to express (3.5.3) as

−x−1q1−3t f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q). (3.5.7)

Combining (3.5.4)–(3.5.7) gives us (3.5.1). Finally, (3.5.2) follows from (2.1.21), (3.5.1)
and

Θ(x; q)
1 − xqi = f1,1,1(qx−1, qi+1; q)

which holds for all i ∈ Z.

We can now prove our final result.

Proof of Theorem 1.2.11. As Φ̂(m)
t (x) = Φ̂(m)

t (x; q) does not have poles, we write

Φ̂(m)
t (x) = ∑

r∈Z
q
(3t−1)r2

6t − (m−1)(3t−1)
3t rarx−r (3.5.8)

for all x ∈ C \ {0}. Substituting (3.5.8) into (3.5.2), we obtain

∑
r∈Z

q
(3t−1)r2

6t − (m−1)(3t−1)
3t r−(3t−1)rarx−r

= ∑
r∈Z

q
(3t−1)r2

6t − (m−1)(3t−1)
3t r−(3t−1

2 )−m(3t−1)arx−r−3t

− x−3tq−(3t−1
2 )−m(3t−1)

3t−2

∑
i=0

(−1)iq(
i+1

2 )+mi

× Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1)) f1,1,1(qx−1, qi+1; q)

+ x−mq−m(3t−1)(q)3
∞ + (−1)tx−3tq−(3t

2 )Θ(x; q) f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q).

(3.5.9)
Using (1.0.1), the last sum on the right-hand side of (3.5.9) can be written as

f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q) ∑

r∈Z
(−1)rq(

r
2)−(3t−1)rx−r. (3.5.10)

We now let r → r− 3t on the right-hand side of (3.5.9), apply (3.5.10) and then compare
coefficients of x−r in the resulting expressions to arrive at the recurrence relation

ar = ar−4t2 + b′r + c′r
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where

b′r := −q−
(3t−1)r2

6t + (m−1)(3t−1)
3t r+(3t−1)r−(3t−1

2 )−m(3t−1)
3t−2

∑
i=0

(−1)iq(
i+1

2 )+mi

× Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1)) ∑

s∈Z
sg(r − 3t, s)(−1)r+t+sq(

r−3t+1
2 )+(r−3t)s+(s+1

2 )+si

+ (−1)rq(
r
2)−

(3t−1)r2
6t + (m−1)(3t−1)

3t r f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

and
c′r := (q)3

∞q−
3t−1

6t m2+ (m−1)(3t−1)
3t m

if r = m and is 0 otherwise. As before, we have

ar = ∑
l∈Z

sg(r, l)br+3tl

where br := −b′r+3t and so in total

Φ̂(m)
t (x) = ∑

r∈Z
q
(3t−1)r2

6t − (m−1)(3t−1)
3t rarx−r

= ∑
r∈Z

q
(3t−1)r2

6t − (m−1)(3t−1)
3t r ∑

l∈Z
sg(r, l)br+3tlx−r

= (−1)t+1q(1−m)(1−3t) f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

× ∑
r,l∈Z

sg(r, l)(−1)r+lq(
r+1

2 )+rl+3t( l
2)((−1)t+1q3tm+1−m)lx−r

+
3t−2

∑
i=0

(−1)iq(
i+1

2 )+miΘ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

× ∑
r,l,s∈Z

sg(r, l) sg(r + 3tl, s)(−1)r+s+lt

× q(
r+1

2 )+rl+3t( l
2)+rs+3tls+(s+1

2 )+l(3mt+1−m)+isx−r

= (−1)t+1q(1−m)(1−3t) f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

× f1,1,3t(x−1q, (−1)t+1q3tm+1−m; q)

+
3t−2

∑
i=0

(−1)iq(
i+1

2 )+miΘ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

× g1,1,3t,1,3t,1(x−1q, (−1)t+1q3mt+1−m, qi+1; q)

(3.5.11)
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where we have used (2.1.19) in the penultimate step. Thus, (1.2.28) follows from
(1.2.26), (2.1.28), (3.0.5) and (3.5.11). Finally, f1,3t,3t(3t−1) is a mixed mock modular form
by (2.1.1) and f1,1,3t is mixed false theta function by (2.1.2).



Chapter 4

Recovering Partial Theta Identities

In [25], Hickerson and Mortenson use explicit formulas for certain classes of mixed
mock fa,b,c’s to obtain new proofs for mock theta identities. In a similar vein, we use
our main results to recover the partial theta identities (1.0.6) – (1.0.9).

4.1 Recovering (1.0.6)

We set t = m = 1 in Theorem 1.2.3 to obtain

U
(1)
1 (x; q) =

(1 − x)
Θ(x; q)

q−1

(q)2
∞

(
− f1,2,1(q−1, q; q) f1,3,12(x−1q,−q8; q)

+ q2 f1,2,1(1, q; q) f1,3,12(x−1q2,−q12; q)− q5 f1,2,1(q, q; q) f1,3,12(x−1q3,−q16; q)

)
.

(4.1.1)
Using [25, Eq. (1.7)] and (2.1.21), one can show that f1,2,1(q−1, q; q) = −q(q)2

∞,
f1,2,1(1, q; q) = 0 and f1,2,1(q, q; q) = (q)2

∞ and so (4.1.1) becomes

U
(1)
1 (x; q) =

(1 − x)
Θ(x; q)

(
f1,3,12(x−1q,−q8; q)− q4 f1,3,12(x−1q3,−q16; q)

)
. (4.1.2)

By (1.0.1), (1.0.10), (2.1.21) , Theorem 2.1.2, the quintuple product identity

∑
k∈Z

q
k(3k−1)

2 x3k(1 − xqk) = (q, x, q/x)∞(qx2, qx−2; q2)∞, (4.1.3)

52
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(4.1.2) and some simplifications, we have

U
(1)
1 (x; q) = (1 − x)

(
1
2 ∑

r≥0
(−1)rx3rq

r(3r+1)
2 (1 − x2q2r+1)

− 1
2 ∑

r<0
(−1)rx3rq

r(3r+1)
2 (1 − x2q2r+1)

− 1
2Θ(x; q)

11

∑
t=0

(−1)tx−tq(
t
2)

Θ(qt; q4)Θ(q4+2t; q8)

(q8; q8)∞

× ∑
r∈Z

sg(r)(q−18+3tx−12)rq36(r+1
2 )

)
.

(4.1.4)

For t even, one of the theta functions in the numerator of the third term on the right-
hand side of (4.1.4) is zero. Thus, it suffices to consider t odd. There are two steps. We
first replace t with 4t + 1 and let 0 ≤ t ≤ 2 in the third term on the right-hand side of
(4.1.4). This eventually yields

x−1

2(x)∞(q/x)∞
∑
k∈Z

sg(k)x−4kq(
2k+1

2 ). (4.1.5)

Next, we replace t with 4t + 3 and let 0 ≤ t ≤ 2 in the third term on the right-hand side
of (4.1.4). This gives

− x−3

2(x)∞(q/x)∞
∑
k∈Z

sg(k)x−4kq(
2k+2

2 ). (4.1.6)

Combining (4.1.5) and (4.1.6), performing the shift k → −k − 1 and using
sg(−k − 1) = −sg(k) leads to

x
2(x)∞(q/x)∞

∑
k∈Z

(−1)ksg(k)x2kq(
k+1

2 ). (4.1.7)

Now, after inserting (4.1.7) into (4.1.4), using (1.0.10) and rearranging terms, we have

U
(1)
1 (x; q) = (1 − x)

(
∑
r≥0

(−1)rx3rq
r(3r+1)

2 (1 − x2q2r+1)

− 1
2 ∑

r∈Z
(−1)rx3rq

r(3r+1)
2 (1 − x2q2r+1)

+
x

(x)∞(q/x)∞
∑
k≥0

(−1)kx2kq(
k+1

2 ) − x
2(x)∞(q/x)∞

∑
k∈Z

(−1)kx2kq(
k+1

2 )

)
.

(4.1.8)
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Applying (1.0.1) twice, then (2.1.21) and (4.1.3) to the second sum on the right-hand
side of (4.1.8) implies

∑
r∈Z

(−1)rx3rq
r(3r+1)

2 (1 − x2q2r+1) = x−1 (q)∞Θ(x2; q)
Θ(x; q)

(4.1.9)

while (1.0.1) and (2.1.21) yield

∑
k∈Z

(−1)kx2k+1q(
k+1

2 ) = −x−1Θ(x2; q). (4.1.10)

Thus, (1.0.6) follows from (4.1.8)–(4.1.10) and then replacing x with −x.

4.2 Recovering (1.0.7)

We first set t = m = 1 in Theorem 1.2.5, then use [25, Eq. (1.7)] and (2.1.21) to deduce
that f1,2,1(q−2, q, q) = −q2(q)2

∞, f1,2,1(q−1, q; q) = −q(q)2
∞ and f1,2,1(1, q; q) = 0 in order

to obtain

W(1)
1 (x; q) = − (1 − x)

(x)∞(q/x)∞
+

(1 − x)
Θ(x; q)

(
f1,3,12(x−1q,−q7; q) + f1,3,12(xq,−q7; q)

− q f1,3,12(x−1q2,−q11; q)− q f1,3,12(xq2,−q11; q)

)
.

(4.2.1)
By (2.1.2), (4.1.3) and some simplifications, we have

f1,3,12(xq,−q7; q)− q f1,3,12(xq2,−q11; q)

=
Θ(x; q)

2

(
−x−1 ∑

r∈Z
sg(r)(−1)rx−3rq3(r+1

2 )−2r

− x−2 ∑
r∈Z

sg(r)(−1)rx−3rq3(r+1
2 )−r

)

+
1
2

11

∑
t=0

(−1)txtq(
t
2)

Θ(qt+1; q4)Θ(q6+2t; q8)

(q8; q8)∞
∑
r∈Z

sg(r)(q−15+3tx12)rq36(r+1
2 ).

(4.2.2)
We now let r → −r − 1 in each of the first two terms on the right-hand side of (4.2.2),
use sg(−r − 1) = −sg(r) and simplify to obtain

−Θ(x; q)
2 ∑

r∈Z
sg(r)(−1)rx3r+1q

(r+1)(3r+2)
2 (1 + xqr+1). (4.2.3)
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For t odd, one of the theta functions in the numerator of the third term on the right-
hand side of (4.2.2) is zero. Thus, it suffices to consider t even. There are two steps.
We first replace t with 4t and let 0 ≤ t ≤ 2 in the third term on the right-hand side of
(4.2.2). This eventually yields

(q)∞

2 ∑
k∈Z

sg(k)x4kq(
2k+1

2 ). (4.2.4)

Next, we replace t with 4t + 2 and let 0 ≤ t ≤ 2 in the third term on the right-hand side
of (4.2.2). This gives

− (q)∞

2 ∑
k∈Z

sg(k)x4k+2q(
2k+2

2 ). (4.2.5)

We now insert the sum of (4.2.4) and (4.2.5) along with (4.2.3) into (4.2.2) to obtain

f1,3,12(xq,−q7; q)− q f1,3,12(xq2,−q11; q)

= −Θ(x; q)
2 ∑

r∈Z
sg(r)(−1)rx3r+1q

(r+1)(3r+2)
2 (1 + xqr+1) +

(q)∞

2 ∑
k∈Z

sg(k)(−1)kx2kq(
k+1

2 ).

(4.2.6)
A similar computation yields

f1,3,12(x−1q,−q7; q)− q f1,3,12(x−1q2,−q11; q)

=
Θ(x; q)

2 ∑
r∈Z

sg(r)(−1)rx3rq
r(3r−1)

2 (1 + xqr) +
(q)∞

2 ∑
k∈Z

sg(k)(−1)kx−2kq(
k+1

2 ).

(4.2.7)
After combining (4.2.6) and (4.2.7), (4.2.1), using (1.0.10) and rearranging terms, we
have

W(1)
1 (x; q) = − (1 − x)

(x)∞(q/x)∞
+ (1 − x)

(
− ∑

r≥0
(−1)rx3r+1q

(r+1)(3r+2)
2 (1 + xqr+1)

+
1
2 ∑

r∈Z
(−1)rx3r+1q

(r+1)(3r+2)
2 (1 + xqr+1) + ∑

r≥0
(−1)rx3rq

r(3r−1)
2 (1 + xqr)

− 1
2 ∑

r∈Z
(−1)rx3rq

r(3r−1)
2 (1 + xqr) +

1 + x2

(x)∞(q/x)∞
∑
k≥0

(−1)kx2kq(
k+1

2 )

− 1 + x2

2(x)∞(q/x)∞
∑
k∈Z

(−1)kx2kq(
k+1

2 )

)
.

(4.2.8)
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Applying (1.0.1) twice, then (4.1.3) to each of the second and fourth sums and (1.0.1)
to the sixth sum on the right-hand side of (4.2.8), then using (2.1.21) and cancelling the
resulting theta functions leads to

W(1)
1 (x; q) = − (1 − x)

(x)∞(q/x)∞
+ (1 − x)

(
− ∑

r≥0
(−1)rx3r+1q

(r+1)(3r+2)
2 (1 + xqr+1)

+ ∑
r≥0

(−1)rx3rq
r(3r−1)

2 (1 + xqr) +
1 + x2

(x)∞(q/x)∞
∑
k≥0

(−1)kx2kq(
k+1

2 )

)
.

(4.2.9)

Finally, we shift r → r − 1 in the first sum, remove the r = 0 term from the second sum
and the k = 0 term from the third sum on the right-hand side of (4.2.9). In total, we
have

W(1)
1 (x; q) = − (1 − x)

(x)∞(q/x)∞
+ (1 − x)

(
1 + x + (1 + x2) ∑

r≥1
(−1)rx3r−2q

r(3r−1)
2 (1 + xqr)

+
1 + x2

(x)∞(q/x)∞
+

1 + x2

(x)∞(q/x)∞
∑
k≥1

(−1)kx2kq(
k+1

2 )

)

which is (1.0.7) after simplification.

4.3 Recovering (1.0.8)

We first set t = m = 1 in Theorem 1.2.7, then use [38, Corollary 3.11] to deduce that
f2,2,1(1, q2; q) = −q3(q)∞(q2; q2)∞ in order to obtain

V
(1)
1 (x; q) = − 1

1 + x

(
1

Θ(−q; q2)
f1,1,2(−q,−q; q2)− 1

Θ(qx; q2)
f1,1,2(x−1q,−q; q2)

)
.

(4.3.1)
By (2.1.2) and some simplifications, we have

f1,1,2(−q,−q; q2) =
Θ(−q; q2)

2 ∑
r∈Z

sg(r)qr2−r +
Θ(−q; q4)

2 ∑
r∈Z

sg(r)q(
r+1

2 )

= Θ(−q; q2)

(4.3.2)
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where in (4.3.2) the first sum is 2 while the second sum is 0 after letting r → −r − 1 and
using that sg(−r − 1) = −sg(r). Similarly, one can check that

f1,1,2(x−1q,−q; q2) =
Θ(qx; q2)

2 ∑
r∈Z

sg(r)(−1)rxrqr2−r

+
Θ(−q; q4)

2 ∑
r∈Z

sg(r)(−1)rxr+1q(
r+1

2 ).
(4.3.3)

By (1.0.10), (4.3.1)–(4.3.3) and rearranging terms, we have

V
(1)
1 (x; q) = − 1

1 + x

(
1 − ∑

r≥0
(−1)rxrqr2−r +

1
2 ∑

r∈Z
(−1)rxrqr2−r

− Θ(−q; q4)

Θ(qx; q2) ∑
r≥0

(−1)rxr+1q(
r+1

2 ) +
Θ(−q; q4)

2Θ(qx; q2) ∑
r∈Z

(−1)rxr+1q(
r+1

2 )

)
.

(4.3.4)

Finally, we apply (1.0.1) to the second and fourth sums, cancel the resulting theta func-
tions, remove the r = 0 term and then perform the shift r → r + 1 in the first sum on
the right-hand side of (4.3.4). In total,

V
(1)
1 (x; q) = − 1

1 + x

(
∑
r≥0

(−1)r+1xr+1qr(r+1) − Θ(−q; q4)

2Θ(qx; q2) ∑
r≥0

(−1)rxr+1q(
r+1

2 )

)

which is (1.0.8) after simplification.

4.4 Recovering (1.0.9)

We first set t = m = 1 in Theorem 1.2.9, then use [25, Eq. (1.7)] and (2.1.21) to deduce
that f1,2,1(q−2, q4; q2) = 0, f1,2,1(1, q4; q2) = q2(q2; q2)2

∞ and f1,2,1(q2, q4; q2) = (q2; q2)2
∞

in order to obtain

O
(1)
1 (x; q) =

q
Θ(xq; q2)

(
f1,3,12(x−1q3,−q20; q2)− q4 f1,3,12(x−1q5,−q28; q2)

)
. (4.4.1)
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By (1.0.1), (2.1.2), (2.1.21) and (4.1.3) and some simplifications, we have

f1,3,12(x−1q3,−q20; q2)− q4 f1,3,12(x−1q5,−q28; q2)

= −q−1Θ(xq; q2)

2 ∑
r∈Z

sg(r)(−1)rx3r+1q3r2+2r(1 + xq2r+1)

+
1
2

11

∑
t=0

(−1)tx−tqt2+2t Θ(q2t+4; q8)Θ(q16+4t; q16)

(q16; q16)∞
∑
r∈Z

sg(r)x−12rq6tr+36r2
.

(4.4.2)
For t even, one of the theta functions in the numerator of the second term on the right-
hand side of (4.4.2) is zero. Thus, it suffices to consider t odd. There are two steps. We
first replace t with 4t + 1 and let 0 ≤ t ≤ 2 in the second term on the right-hand side
of (4.4.2). This eventually yields

q−1x−1(q2; q2)∞

2 ∑
k∈Z

sg(k)x−4kq2(2k+1
2 ). (4.4.3)

Next, we replace t with 4t + 3 and let 0 ≤ t ≤ 2 in the third term on the right-hand side
of (4.4.2). This gives

−q−1x−1(q2; q2)∞

2 ∑
k∈Z

sg(k)x−4k−2q2(2k+2
2 ). (4.4.4)

We now combine (4.4.3) and (4.4.4), perform the shift k → −k − 1 and use that
sg(−k − 1) = −sg(k) to obtain

q−1(q2; q2)∞

2 ∑
k∈Z

sg(k)(−1)kx2k+1q2(k+1
2 ). (4.4.5)

Now, after inserting (4.4.5) into (4.4.2), (4.4.1), using (1.0.10) and rearranging terms, we
have

O
(1)
1 (x; q) = −1

2

(
2 ∑

r≥0
(−1)rx3r+1q3r2+2r(1 + xq2r+1)

− ∑
r∈Z

(−1)rx3r+1q3r2+2r(1 + xq2r+1)

)

+
(q2; q2)∞

2Θ(xq; q2)

(
2 ∑

k≥0
(−1)kx2k+1q2(k+1

2 ) − ∑
k∈Z

(−1)kx2k+1q2(k+1
2 )

)
.

(4.4.6)
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Note that two applications of (1.0.1) followed by (4.1.3) implies

∑
r∈Z

(−1)rx3r+1q3r2+2r(1 + xq2r+1) = x
Θ(−xq; q2)Θ(x2q4; q4)

(q4; q4)∞
(4.4.7)

while (1.0.1) yields

∑
k∈Z

(−1)kx2k+1q2(k+1)
2 ) = xΘ(x2q2; q2). (4.4.8)

Thus, (1.0.9) follows from (4.4.6)–(4.4.8), cancelling the theta functions and then replac-
ing x with −x.



Chapter 5

Future Directions

5.1 Beyond the Main Theorems

There are numerous directions for further study. For example, it would be worth-
while to find a q-multisum expression for U(m)

t (x; q) (and the other cases in Theorems
1.2.5, 1.2.7, 1.2.9 and 1.2.11), akin to (1.1.2) for the strongly unimodal sequence generat-
ing function, in order to discover a combinatorial interpretation for their coefficients
or a potential connection to the coloured Jones polynomial for some family of knots. A
possible starting point is the fact that (1.2.4) is an application of the techniques in [32]
combined with appropriately chosen Bailey pairs. A strategy would be to find two-
parameter generalisations of the Bailey pair identities of [32, Theorems 1.1 and 1.2].
Another strategy would be to use techniques of Warnaar analogous to [46] where he
generalises other partial theta identities from the lost notebook. Warnaar generalises
(1.0.6) in Theorem 1.4 of [46]. We provide an alternative generalisation using Theorem
1.2.3. For t, m ∈ Z such that −t ≤ m ≤ 3t − 2, one can show
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U
(m)
t (x; q) = −1

2
1 − x
(q)2

∞
q1−3t2− t−m

2 +tm
4t2−2

∑
k=0

xkqk f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

× ∑
r∈Z

sg(r)(−1)rx(4t2−1)rq(4t2−1)(r
2)+r(k+t2+tm− t−m

2 )

+
1
2

1 − x
Θ(x; q)

q1−3t2− t−m
2 +tm

(q)2
∞

4t2−2

∑
k=0

(−1)k+1q(
k+1

2 )+k f1,2t,1(q2−4t2+ t+m
2 +k, q1+ t−m

2 ; q)

×
4t2−1

∑
l=0

(−1)lx−lqkl+(l+1
2 )Θ(−q(4t2−1)l+4t2−t2+tm− t−m

2 +8t4
; q4t2(4t2−1))

× ∑
R∈Z

sg(R)x−4t2Rq2t2R2+R(tm− t−m
2 +l+t2).

Similarly, we can generalise (1.0.9) using Theorem 1.2.9. For t, m ∈ Z such that
1 − t ≤ m ≤ t, one can show

O
(m)
t (x; q) = −1

2
q3−8t2−2(m−1)(2t−1)

(q2; q2)2
∞

4t2−2

∑
k=0

q3kxk f1,2t,1(q2t+2m+2−8t2+2k, q2t+2m; q2)

× ∑
r∈Z

sg(r)(−1)rx(4t2−1)rq(4t2−1)r2+(2k−2(m−1)(2t−1))r

+
1
2

q3−8t2−2(m−1)(2t−1)

Θ(xq; q2)(q2; q2)2
∞

4t2−2

∑
k=0

(−1)k+1qk2+3k f1,2t,1(q2t+2m+2−8t2+2k, q2t+2m; q2)

×
4t2−1

∑
l=0

(−1)lx−lql2+2klΘ(−q2(4t2−1)l+4t2(4t2−1)+8t2k−2(m−1)(2t−1) : q8t2(4t2−1))

× ∑
R∈Z

sg(R)x−4t2Rq4t2R2+R(2l+2(m−1)(2t−1)).

These are analogous to the right-hand sides of Theorems 1.1–1.4 of Warnaar in [46].
Recovering the respective left-hand sides of these Warnaar-type identities would yield
q-multisum expressions for U(m)

t and O
(m)
t .

Although U
(m)
t (x; q) may not have monotonic coefficients when x is some rational

power of q, we demonstrate one instance of U(m)
t (x; q) with a neat combinatorial inter-

pretation. For t = 2 and m = 0, we have that

U
(0)
2 (1; q) = 1 + q + 2q2 + 4q3 + 8q4 + 15q5 + 27q6 + 47q7 + 79q8 + · · ·
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is the generating function ∑
n≥0

un(n)qn where un(n) is the number of unimodal se-

quences of weight n such that sequences with a repeated peak are not counted multiple
times. In comparison to (1.2.2), un(4) = 8 and the sequences of weight 4 are

(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1).

5.2 Hecke-Appell Sums

For convenience, recall the Hecke-Appell expansions for the unimodal sequence gener-
ating function,

U(x; q) =
(1 − x)
(q)2

∞

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq

r2
2 +2rs+ s2

2 + 3
2 r+ 1

2 s

1 − xqr , (5.2.1)

and the strongly unimodal sequence generating function

U(1)
1 (−x; q) = −q−

5
8
(qx)∞(x−1q)∞

(q)2
∞

×

 ∑
r,s≥0

r ̸≡s (mod 2)

− ∑
r,s<0

r ̸≡s (mod 2)

 (−1)
r−s−1

2 q
1
8 r2+ 7

4 rs+ 1
8 s2+ 3

2 r+ 1
2 s

1 − xq
r+s+1

2

(5.2.2)

One can study generalisations of (5.2.1) and (5.2.2), namely

∑
r,s∈Z

sg(r, s)(−1)r+s qQ(r,s)+P(r,s)

1 − xqr (5.2.3)

and

∑
r,s∈Z

sg(r, s)(−1)r+s qQ(r,s)+P(r,s)

1 − xqr+s (5.2.4)

where Q(r, s) is a quadratic form and P(r, s) is a linear form, and the numerator sum

∑
r,s∈Z

sg(r, s)(−1)r+sqQ(r,s)+P(r,s) (5.2.5)

is a modular form. By the results in this thesis and [35], the first type should correspond
to mixed false theta functions and the second type to mixed mock theta functions.
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Consider a specialisation of (5.2.3) and (5.2.4) at x = q−c for some c ∈ Z. Observe
that (5.2.3) features a pole when r = c, for all s ∈ Z. However, (5.2.4) features a
pole when r + s = c, i.e., finitely many terms in the sum. This leads to the question of
whether or not the behaviour of these functions at the poles characterises their modular
properties.

5.3 Quantum Modular Forms

In [50], Zagier introduced the notion of a quantum modular form. Although the canon-
ical definition is in flux, we define a quantum modular form of weight k ∈ 1

2Z as a func-
tion f : Q → C such that

f (τ)− (cτ + d)−k f
(

aτ + b
cτ + d

)
extends to a real-analytic function on P1 \ Sγ, where Sγ is a finite set for each γ =(

a b
c d

)
∈ SL2(Z). Given that false theta functions are examples of quantum modular

forms [24, Section 4.4], it would be highly desirable to investigate whether Theorems
1.2.3, 1.2.5, 1.2.7, 1.2.9 and 1.2.11 lead to the construction of new families of quantum
Jacobi forms in the spirit of [23].

5.4 Higher Dimensional Analogues of fa,b,c(x, y; q)

Recall the classification of Hecke-type double sums using the discriminant D in Re-
mark 2.1.7. D is obviously related to the discriminant of the quadratic form in the
exponent of fa,b,c. It would be interesting to determine a similar characterisation for
higher-dimensional Hecke-type sums of the form

∑
r1,r2,...,rn∈Z

sg(r1)=sg(r2)=···=sg(rn)

(−1)r1+r2+···+rn qQ(r1,r2,...,rn)xr1
1 xr2

2 · · · xrn
n .

Is there a higher-dimensional analogue to the classification theorem of fa,b,c using the
discriminant of an arbitrary quadratic form Q(r1, r2, . . . , rn)?
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